File size: 4,766 Bytes
81b1a0e b59df1c 81b1a0e e797135 6be00d8 e797135 81b1a0e 69b7015 81b1a0e 327742a 81b1a0e f406b44 81b1a0e 327742a 81b1a0e a10635a 81b1a0e d967d62 fbe03e2 e797135 b59df1c d38161e 1352148 8bcc400 66fad2f 1352148 8bcc400 1352148 b59df1c 8aa2ae3 327742a 81b1a0e 327742a 81b1a0e f406b44 81b1a0e 69b7015 81b1a0e cf6fe1a 440356f 81b1a0e e797135 81b1a0e fbe03e2 de5ed42 81b1a0e b59df1c a10635a b59df1c e797135 81b1a0e ec6f3d6 81b1a0e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 |
import os
from glob import glob
import cv2
import numpy as np
from PIL import Image
import torch
from torchvision import transforms
from transformers import AutoModelForImageSegmentation
import gradio as gr
import spaces
from gradio_imageslider import ImageSlider
torch.set_float32_matmul_precision('high')
torch.jit.script = lambda f: f
device = "cuda" if torch.cuda.is_available() else "cpu"
def array_to_pil_image(image, size=(1024, 1024)):
image = cv2.resize(image, size, interpolation=cv2.INTER_LINEAR)
image = Image.fromarray(image).convert('RGB')
return image
class ImagePreprocessor():
def __init__(self, resolution=(1024, 1024)) -> None:
self.transform_image = transforms.Compose([
# transforms.Resize(resolution), # 1. keep consistent with the cv2.resize used in training 2. redundant with that in path_to_image()
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
])
def proc(self, image):
image = self.transform_image(image)
return image
usage_to_weights_file = {
'General': 'BiRefNet',
'Portrait': 'BiRefNet-portrait',
'DIS': 'BiRefNet-DIS5K',
'HRSOD': 'BiRefNet-HRSOD',
'COD': 'BiRefNet-COD',
'DIS-TR_TEs': 'BiRefNet-DIS5K-TR_TEs'
}
from transformers import AutoModelForImageSegmentation
weights_path = 'General'
birefnet = AutoModelForImageSegmentation.from_pretrained('/'.join(('zhengpeng7', usage_to_weights_file[weights_path])), trust_remote_code=True)
birefnet.to(device)
birefnet.eval()
birefnet.weights_path = weights_path
@spaces.GPU
def predict(image, resolution, weights_file):
global birefnet
if birefnet.weights_path != weights_file:
# Load BiRefNet with chosen weights
_weights_file = '/'.join(('zhengpeng7', usage_to_weights_file[weights_file] if weights_file is not None else 'BiRefNet'))
print('Change weights to:', _weights_file)
print('\t', weights_file, birefnet.weights_path)
birefnet = birefnet.from_pretrained(_weights_file)
birefnet.to(device)
birefnet.eval()
birefnet.weights_path = weights_file
resolution = f"{image.shape[1]}x{image.shape[0]}" if resolution == '' else resolution
# Image is a RGB numpy array.
resolution = [int(int(reso)//32*32) for reso in resolution.strip().split('x')]
images = [image]
image_shapes = [image.shape[:2] for image in images]
images = [array_to_pil_image(image, resolution) for image in images]
image_preprocessor = ImagePreprocessor(resolution=resolution)
images_proc = []
for image in images:
images_proc.append(image_preprocessor.proc(image))
images_proc = torch.cat([image_proc.unsqueeze(0) for image_proc in images_proc])
with torch.no_grad():
scaled_preds_tensor = birefnet(images_proc.to(device))[-1].sigmoid() # BiRefNet needs an sigmoid activation outside the forward.
preds = []
for image_shape, pred_tensor in zip(image_shapes, scaled_preds_tensor):
if device == 'cuda':
pred_tensor = pred_tensor.cpu()
preds.append(torch.nn.functional.interpolate(pred_tensor.unsqueeze(0), size=image_shape, mode='bilinear', align_corners=True).squeeze().numpy())
image_preds = []
for image, pred in zip(images, preds):
image = image.resize(pred.shape[::-1])
pred = np.repeat(np.expand_dims(pred, axis=-1), 3, axis=-1)
image_preds.append((pred * image).astype(np.uint8))
return image, image_preds[0]
examples = [[_] for _ in glob('examples/*')][:]
# Add the option of resolution in a text box.
for idx_example, example in enumerate(examples):
examples[idx_example].append('1024x1024')
examples.append(examples[-1].copy())
examples[-1][1] = '512x512'
demo = gr.Interface(
fn=predict,
inputs=[
'image',
gr.Textbox(lines=1, placeholder="Type the resolution (`WxH`) you want, e.g., `512x512`. Higher resolutions can be much slower for inference.", label="Resolution"),
gr.Radio(list(usage_to_weights_file.keys()), label="Weights", info="Choose the weights you want.")
],
outputs=ImageSlider(),
examples=examples,
title='Online demo for `Bilateral Reference for High-Resolution Dichotomous Image Segmentation`',
description=('Upload a picture, our model will extract a highly accurate segmentation of the subject in it. :)'
'\nThe resolution used in our training was `1024x1024`, which is thus the suggested resolution to obtain good results!\n Ours codes can be found at https://github.com/ZhengPeng7/BiRefNet.\n We also maintain the HF model of BiRefNet at https://huggingface.co/ZhengPeng7/birefnet for easier access.')
)
demo.launch(debug=True)
|