randomtable's picture
Update app.py
7c05f45 verified
raw
history blame
4.58 kB
import os
import cv2
import numpy as np
import torch
import gradio as gr
import spaces
from glob import glob
from typing import Optional, Tuple
from PIL import Image
from gradio_imageslider import ImageSlider
from transformers import AutoModelForImageSegmentation
from torchvision import transforms
torch.set_float32_matmul_precision('high')
torch.jit.script = lambda f: f
device = "cuda" if torch.cuda.is_available() else "cpu"
def array_to_pil_image(image: np.ndarray, size: Tuple[int, int] = (1024, 1024)) -> Image.Image:
image = cv2.resize(image, size, interpolation=cv2.INTER_LINEAR)
image = Image.fromarray(image).convert('RGB')
return image
class ImagePreprocessor():
def __init__(self, resolution: Tuple[int, int] = (1024, 1024)) -> None:
self.transform_image = transforms.Compose([
# transforms.Resize(resolution), # 1. keep consistent with the cv2.resize used in training 2. redundant with that in path_to_image()
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
])
def proc(self, image: Image.Image) -> torch.Tensor:
image = self.transform_image(image)
return image
usage_to_weights_file = {
'General': 'BiRefNet',
'General-Lite': 'BiRefNet_T',
'Portrait': 'BiRefNet-portrait',
'DIS': 'BiRefNet-DIS5K',
'HRSOD': 'BiRefNet-HRSOD',
'COD': 'BiRefNet-COD',
'DIS-TR_TEs': 'BiRefNet-DIS5K-TR_TEs'
}
birefnet = AutoModelForImageSegmentation.from_pretrained('/'.join(('zhengpeng7', usage_to_weights_file['General'])), trust_remote_code=True)
birefnet.to(device)
birefnet.eval()
@spaces.GPU
def predict(
image: np.ndarray,
resolution: str,
weights_file: Optional[str]
) -> Tuple[np.ndarray, np.ndarray]:
global birefnet
# Load BiRefNet with chosen weights
_weights_file = '/'.join(('zhengpeng7', usage_to_weights_file[weights_file] if weights_file is not None else usage_to_weights_file['General']))
print('Using weights:', _weights_file)
birefnet = AutoModelForImageSegmentation.from_pretrained(_weights_file, trust_remote_code=True)
birefnet.to(device)
birefnet.eval()
resolution = f"{image.shape[1]}x{image.shape[0]}" if resolution == '' else resolution
resolution = [int(int(reso)//32*32) for reso in resolution.strip().split('x')]
image_shape = image.shape[:2]
image_pil = array_to_pil_image(image, tuple(resolution))
# Preprocess the image
image_preprocessor = ImagePreprocessor(resolution=tuple(resolution))
image_proc = image_preprocessor.proc(image_pil)
image_proc = image_proc.unsqueeze(0)
# Perform the prediction
with torch.no_grad():
scaled_pred_tensor = birefnet(image_proc.to(device))[-1].sigmoid()
if device == 'cuda':
scaled_pred_tensor = scaled_pred_tensor.cpu()
# Resize the prediction to match the original image shape
pred = torch.nn.functional.interpolate(scaled_pred_tensor, size=image_shape, mode='bilinear', align_corners=True).squeeze().numpy()
# Apply the prediction mask to the original image
image_pil = image_pil.resize(pred.shape[::-1])
pred = np.repeat(np.expand_dims(pred, axis=-1), 3, axis=-1)
image_pred = (pred * np.array(image_pil)).astype(np.uint8)
return image_pred
examples = [[_] for _ in glob('examples/*')][:]
# Add the option of resolution in a text box.
for idx_example, example in enumerate(examples):
examples[idx_example].append('1024x1024')
examples.append(examples[-1].copy())
examples[-1][1] = '512x512'
demo = gr.Interface(
fn=predict,
inputs=[
'image',
gr.Textbox(lines=1, placeholder="Type the resolution (`WxH`) you want, e.g., `1024x1024`. Higher resolutions can be much slower for inference.", label="Resolution"),
gr.Radio(list(usage_to_weights_file.keys()), value='General', label="Weights", info="Choose the weights you want.")
],
outputs=gr.Image(type="numpy", label="Output"),
examples=examples,
title='Online demo for `Bilateral Reference for High-Resolution Dichotomous Image Segmentation`',
description=('Upload a picture, our model will extract a highly accurate segmentation of the subject in it. :)'
'\nThe resolution used in our training was `1024x1024`, thus the suggested resolution to obtain good results!\n Ours codes can be found at https://github.com/ZhengPeng7/BiRefNet.\n We also maintain the HF model of BiRefNet at https://huggingface.co/ZhengPeng7/BiRefNet for easier access.')
)
demo.launch(debug=True)