|
import os |
|
import cv2 |
|
import numpy as np |
|
import torch |
|
import gradio as gr |
|
import spaces |
|
|
|
from glob import glob |
|
from typing import Optional, Tuple |
|
|
|
from PIL import Image |
|
from gradio_imageslider import ImageSlider |
|
from transformers import AutoModelForImageSegmentation |
|
from torchvision import transforms |
|
|
|
torch.set_float32_matmul_precision('high') |
|
torch.jit.script = lambda f: f |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
|
|
def array_to_pil_image(image: np.ndarray, size: Tuple[int, int] = (1024, 1024)) -> Image.Image: |
|
image = cv2.resize(image, size, interpolation=cv2.INTER_LINEAR) |
|
image = Image.fromarray(image).convert('RGB') |
|
return image |
|
|
|
|
|
class ImagePreprocessor(): |
|
def __init__(self, resolution: Tuple[int, int] = (1024, 1024)) -> None: |
|
self.transform_image = transforms.Compose([ |
|
|
|
transforms.ToTensor(), |
|
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), |
|
]) |
|
|
|
def proc(self, image: Image.Image) -> torch.Tensor: |
|
image = self.transform_image(image) |
|
return image |
|
|
|
|
|
usage_to_weights_file = { |
|
'General': 'BiRefNet', |
|
'General-Lite': 'BiRefNet_T', |
|
'Portrait': 'BiRefNet-portrait', |
|
'DIS': 'BiRefNet-DIS5K', |
|
'HRSOD': 'BiRefNet-HRSOD', |
|
'COD': 'BiRefNet-COD', |
|
'DIS-TR_TEs': 'BiRefNet-DIS5K-TR_TEs' |
|
} |
|
|
|
birefnet = AutoModelForImageSegmentation.from_pretrained('/'.join(('zhengpeng7', usage_to_weights_file['General'])), trust_remote_code=True) |
|
birefnet.to(device) |
|
birefnet.eval() |
|
|
|
|
|
@spaces.GPU |
|
def predict( |
|
image: np.ndarray, |
|
resolution: str, |
|
weights_file: Optional[str] |
|
) -> Tuple[np.ndarray, np.ndarray]: |
|
global birefnet |
|
|
|
_weights_file = '/'.join(('zhengpeng7', usage_to_weights_file[weights_file] if weights_file is not None else usage_to_weights_file['General'])) |
|
print('Using weights:', _weights_file) |
|
birefnet = AutoModelForImageSegmentation.from_pretrained(_weights_file, trust_remote_code=True) |
|
birefnet.to(device) |
|
birefnet.eval() |
|
|
|
resolution = f"{image.shape[1]}x{image.shape[0]}" if resolution == '' else resolution |
|
resolution = [int(int(reso)//32*32) for reso in resolution.strip().split('x')] |
|
|
|
image_shape = image.shape[:2] |
|
image_pil = array_to_pil_image(image, tuple(resolution)) |
|
|
|
|
|
image_preprocessor = ImagePreprocessor(resolution=tuple(resolution)) |
|
image_proc = image_preprocessor.proc(image_pil) |
|
image_proc = image_proc.unsqueeze(0) |
|
|
|
|
|
with torch.no_grad(): |
|
scaled_pred_tensor = birefnet(image_proc.to(device))[-1].sigmoid() |
|
|
|
if device == 'cuda': |
|
scaled_pred_tensor = scaled_pred_tensor.cpu() |
|
|
|
|
|
pred = torch.nn.functional.interpolate(scaled_pred_tensor, size=image_shape, mode='bilinear', align_corners=True).squeeze().numpy() |
|
|
|
|
|
image_pil = image_pil.resize(pred.shape[::-1]) |
|
pred = np.repeat(np.expand_dims(pred, axis=-1), 3, axis=-1) |
|
image_pred = (pred * np.array(image_pil)).astype(np.uint8) |
|
|
|
return image_pred |
|
|
|
|
|
examples = [[_] for _ in glob('examples/*')][:] |
|
|
|
|
|
for idx_example, example in enumerate(examples): |
|
examples[idx_example].append('1024x1024') |
|
examples.append(examples[-1].copy()) |
|
examples[-1][1] = '512x512' |
|
|
|
demo = gr.Interface( |
|
fn=predict, |
|
inputs=[ |
|
'image', |
|
gr.Textbox(lines=1, placeholder="Type the resolution (`WxH`) you want, e.g., `1024x1024`. Higher resolutions can be much slower for inference.", label="Resolution"), |
|
gr.Radio(list(usage_to_weights_file.keys()), value='General', label="Weights", info="Choose the weights you want.") |
|
], |
|
outputs=gr.Image(type="numpy", label="Output"), |
|
examples=examples, |
|
title='Online demo for `Bilateral Reference for High-Resolution Dichotomous Image Segmentation`', |
|
description=('Upload a picture, our model will extract a highly accurate segmentation of the subject in it. :)' |
|
'\nThe resolution used in our training was `1024x1024`, thus the suggested resolution to obtain good results!\n Ours codes can be found at https://github.com/ZhengPeng7/BiRefNet.\n We also maintain the HF model of BiRefNet at https://huggingface.co/ZhengPeng7/BiRefNet for easier access.') |
|
) |
|
demo.launch(debug=True) |
|
|