import numpy as np | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from functools import partial | |
from config import Config | |
config = Config() | |
class BasicLatBlk(nn.Module): | |
def __init__(self, in_channels=64, out_channels=64, inter_channels=64): | |
super(BasicLatBlk, self).__init__() | |
inter_channels = in_channels // 4 if config.dec_channels_inter == 'adap' else 64 | |
self.conv = nn.Conv2d(in_channels, out_channels, 1, 1, 0) | |
def forward(self, x): | |
x = self.conv(x) | |
return x | |