|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import torch.utils.checkpoint as checkpoint |
|
import numpy as np |
|
from timm.models.layers import DropPath, to_2tuple, trunc_normal_ |
|
|
|
from config import Config |
|
|
|
|
|
config = Config() |
|
|
|
class Mlp(nn.Module): |
|
""" Multilayer perceptron.""" |
|
|
|
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): |
|
super().__init__() |
|
out_features = out_features or in_features |
|
hidden_features = hidden_features or in_features |
|
self.fc1 = nn.Linear(in_features, hidden_features) |
|
self.act = act_layer() |
|
self.fc2 = nn.Linear(hidden_features, out_features) |
|
self.drop = nn.Dropout(drop) |
|
|
|
def forward(self, x): |
|
x = self.fc1(x) |
|
x = self.act(x) |
|
x = self.drop(x) |
|
x = self.fc2(x) |
|
x = self.drop(x) |
|
return x |
|
|
|
|
|
def window_partition(x, window_size): |
|
""" |
|
Args: |
|
x: (B, H, W, C) |
|
window_size (int): window size |
|
|
|
Returns: |
|
windows: (num_windows*B, window_size, window_size, C) |
|
""" |
|
B, H, W, C = x.shape |
|
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C) |
|
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C) |
|
return windows |
|
|
|
|
|
def window_reverse(windows, window_size, H, W): |
|
""" |
|
Args: |
|
windows: (num_windows*B, window_size, window_size, C) |
|
window_size (int): Window size |
|
H (int): Height of image |
|
W (int): Width of image |
|
|
|
Returns: |
|
x: (B, H, W, C) |
|
""" |
|
B = int(windows.shape[0] / (H * W / window_size / window_size)) |
|
x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1) |
|
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) |
|
return x |
|
|
|
|
|
class WindowAttention(nn.Module): |
|
""" Window based multi-head self attention (W-MSA) module with relative position bias. |
|
It supports both of shifted and non-shifted window. |
|
|
|
Args: |
|
dim (int): Number of input channels. |
|
window_size (tuple[int]): The height and width of the window. |
|
num_heads (int): Number of attention heads. |
|
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True |
|
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set |
|
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0 |
|
proj_drop (float, optional): Dropout ratio of output. Default: 0.0 |
|
""" |
|
|
|
def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.): |
|
|
|
super().__init__() |
|
self.dim = dim |
|
self.window_size = window_size |
|
self.num_heads = num_heads |
|
head_dim = dim // num_heads |
|
self.scale = qk_scale or head_dim ** -0.5 |
|
|
|
|
|
self.relative_position_bias_table = nn.Parameter( |
|
torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)) |
|
|
|
|
|
coords_h = torch.arange(self.window_size[0]) |
|
coords_w = torch.arange(self.window_size[1]) |
|
coords = torch.stack(torch.meshgrid([coords_h, coords_w], indexing='ij')) |
|
coords_flatten = torch.flatten(coords, 1) |
|
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] |
|
relative_coords = relative_coords.permute(1, 2, 0).contiguous() |
|
relative_coords[:, :, 0] += self.window_size[0] - 1 |
|
relative_coords[:, :, 1] += self.window_size[1] - 1 |
|
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1 |
|
relative_position_index = relative_coords.sum(-1) |
|
self.register_buffer("relative_position_index", relative_position_index) |
|
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) |
|
self.attn_drop_prob = attn_drop |
|
self.attn_drop = nn.Dropout(attn_drop) |
|
self.proj = nn.Linear(dim, dim) |
|
self.proj_drop = nn.Dropout(proj_drop) |
|
|
|
trunc_normal_(self.relative_position_bias_table, std=.02) |
|
self.softmax = nn.Softmax(dim=-1) |
|
|
|
def forward(self, x, mask=None): |
|
""" Forward function. |
|
|
|
Args: |
|
x: input features with shape of (num_windows*B, N, C) |
|
mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None |
|
""" |
|
B_, N, C = x.shape |
|
qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) |
|
q, k, v = qkv[0], qkv[1], qkv[2] |
|
|
|
q = q * self.scale |
|
|
|
if config.SDPA_enabled: |
|
x = torch.nn.functional.scaled_dot_product_attention( |
|
q, k, v, |
|
attn_mask=None, dropout_p=self.attn_drop_prob, is_causal=False |
|
).transpose(1, 2).reshape(B_, N, C) |
|
else: |
|
attn = (q @ k.transpose(-2, -1)) |
|
|
|
relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view( |
|
self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) |
|
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() |
|
attn = attn + relative_position_bias.unsqueeze(0) |
|
|
|
if mask is not None: |
|
nW = mask.shape[0] |
|
attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0) |
|
attn = attn.view(-1, self.num_heads, N, N) |
|
attn = self.softmax(attn) |
|
else: |
|
attn = self.softmax(attn) |
|
|
|
attn = self.attn_drop(attn) |
|
|
|
x = (attn @ v).transpose(1, 2).reshape(B_, N, C) |
|
x = self.proj(x) |
|
x = self.proj_drop(x) |
|
return x |
|
|
|
|
|
class SwinTransformerBlock(nn.Module): |
|
""" Swin Transformer Block. |
|
|
|
Args: |
|
dim (int): Number of input channels. |
|
num_heads (int): Number of attention heads. |
|
window_size (int): Window size. |
|
shift_size (int): Shift size for SW-MSA. |
|
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. |
|
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True |
|
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. |
|
drop (float, optional): Dropout rate. Default: 0.0 |
|
attn_drop (float, optional): Attention dropout rate. Default: 0.0 |
|
drop_path (float, optional): Stochastic depth rate. Default: 0.0 |
|
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU |
|
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm |
|
""" |
|
|
|
def __init__(self, dim, num_heads, window_size=7, shift_size=0, |
|
mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0., |
|
act_layer=nn.GELU, norm_layer=nn.LayerNorm): |
|
super().__init__() |
|
self.dim = dim |
|
self.num_heads = num_heads |
|
self.window_size = window_size |
|
self.shift_size = shift_size |
|
self.mlp_ratio = mlp_ratio |
|
assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size" |
|
|
|
self.norm1 = norm_layer(dim) |
|
self.attn = WindowAttention( |
|
dim, window_size=to_2tuple(self.window_size), num_heads=num_heads, |
|
qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) |
|
|
|
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() |
|
self.norm2 = norm_layer(dim) |
|
mlp_hidden_dim = int(dim * mlp_ratio) |
|
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) |
|
|
|
self.H = None |
|
self.W = None |
|
|
|
def forward(self, x, mask_matrix): |
|
""" Forward function. |
|
|
|
Args: |
|
x: Input feature, tensor size (B, H*W, C). |
|
H, W: Spatial resolution of the input feature. |
|
mask_matrix: Attention mask for cyclic shift. |
|
""" |
|
B, L, C = x.shape |
|
H, W = self.H, self.W |
|
assert L == H * W, "input feature has wrong size" |
|
|
|
shortcut = x |
|
x = self.norm1(x) |
|
x = x.view(B, H, W, C) |
|
|
|
|
|
pad_l = pad_t = 0 |
|
pad_r = (self.window_size - W % self.window_size) % self.window_size |
|
pad_b = (self.window_size - H % self.window_size) % self.window_size |
|
x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b)) |
|
_, Hp, Wp, _ = x.shape |
|
|
|
|
|
if self.shift_size > 0: |
|
shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2)) |
|
attn_mask = mask_matrix |
|
else: |
|
shifted_x = x |
|
attn_mask = None |
|
|
|
|
|
x_windows = window_partition(shifted_x, self.window_size) |
|
x_windows = x_windows.view(-1, self.window_size * self.window_size, C) |
|
|
|
|
|
attn_windows = self.attn(x_windows, mask=attn_mask) |
|
|
|
|
|
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C) |
|
shifted_x = window_reverse(attn_windows, self.window_size, Hp, Wp) |
|
|
|
|
|
if self.shift_size > 0: |
|
x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2)) |
|
else: |
|
x = shifted_x |
|
|
|
if pad_r > 0 or pad_b > 0: |
|
x = x[:, :H, :W, :].contiguous() |
|
|
|
x = x.view(B, H * W, C) |
|
|
|
|
|
x = shortcut + self.drop_path(x) |
|
x = x + self.drop_path(self.mlp(self.norm2(x))) |
|
|
|
return x |
|
|
|
|
|
class PatchMerging(nn.Module): |
|
""" Patch Merging Layer |
|
|
|
Args: |
|
dim (int): Number of input channels. |
|
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm |
|
""" |
|
def __init__(self, dim, norm_layer=nn.LayerNorm): |
|
super().__init__() |
|
self.dim = dim |
|
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False) |
|
self.norm = norm_layer(4 * dim) |
|
|
|
def forward(self, x, H, W): |
|
""" Forward function. |
|
|
|
Args: |
|
x: Input feature, tensor size (B, H*W, C). |
|
H, W: Spatial resolution of the input feature. |
|
""" |
|
B, L, C = x.shape |
|
assert L == H * W, "input feature has wrong size" |
|
|
|
x = x.view(B, H, W, C) |
|
|
|
|
|
pad_input = (H % 2 == 1) or (W % 2 == 1) |
|
if pad_input: |
|
x = F.pad(x, (0, 0, 0, W % 2, 0, H % 2)) |
|
|
|
x0 = x[:, 0::2, 0::2, :] |
|
x1 = x[:, 1::2, 0::2, :] |
|
x2 = x[:, 0::2, 1::2, :] |
|
x3 = x[:, 1::2, 1::2, :] |
|
x = torch.cat([x0, x1, x2, x3], -1) |
|
x = x.view(B, -1, 4 * C) |
|
|
|
x = self.norm(x) |
|
x = self.reduction(x) |
|
|
|
return x |
|
|
|
|
|
class BasicLayer(nn.Module): |
|
""" A basic Swin Transformer layer for one stage. |
|
|
|
Args: |
|
dim (int): Number of feature channels |
|
depth (int): Depths of this stage. |
|
num_heads (int): Number of attention head. |
|
window_size (int): Local window size. Default: 7. |
|
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4. |
|
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True |
|
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. |
|
drop (float, optional): Dropout rate. Default: 0.0 |
|
attn_drop (float, optional): Attention dropout rate. Default: 0.0 |
|
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 |
|
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm |
|
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None |
|
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False. |
|
""" |
|
|
|
def __init__(self, |
|
dim, |
|
depth, |
|
num_heads, |
|
window_size=7, |
|
mlp_ratio=4., |
|
qkv_bias=True, |
|
qk_scale=None, |
|
drop=0., |
|
attn_drop=0., |
|
drop_path=0., |
|
norm_layer=nn.LayerNorm, |
|
downsample=None, |
|
use_checkpoint=False): |
|
super().__init__() |
|
self.window_size = window_size |
|
self.shift_size = window_size // 2 |
|
self.depth = depth |
|
self.use_checkpoint = use_checkpoint |
|
|
|
|
|
self.blocks = nn.ModuleList([ |
|
SwinTransformerBlock( |
|
dim=dim, |
|
num_heads=num_heads, |
|
window_size=window_size, |
|
shift_size=0 if (i % 2 == 0) else window_size // 2, |
|
mlp_ratio=mlp_ratio, |
|
qkv_bias=qkv_bias, |
|
qk_scale=qk_scale, |
|
drop=drop, |
|
attn_drop=attn_drop, |
|
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path, |
|
norm_layer=norm_layer) |
|
for i in range(depth)]) |
|
|
|
|
|
if downsample is not None: |
|
self.downsample = downsample(dim=dim, norm_layer=norm_layer) |
|
else: |
|
self.downsample = None |
|
|
|
def forward(self, x, H, W): |
|
""" Forward function. |
|
|
|
Args: |
|
x: Input feature, tensor size (B, H*W, C). |
|
H, W: Spatial resolution of the input feature. |
|
""" |
|
|
|
|
|
Hp = int(np.ceil(H / self.window_size)) * self.window_size |
|
Wp = int(np.ceil(W / self.window_size)) * self.window_size |
|
img_mask = torch.zeros((1, Hp, Wp, 1), device=x.device) |
|
h_slices = (slice(0, -self.window_size), |
|
slice(-self.window_size, -self.shift_size), |
|
slice(-self.shift_size, None)) |
|
w_slices = (slice(0, -self.window_size), |
|
slice(-self.window_size, -self.shift_size), |
|
slice(-self.shift_size, None)) |
|
cnt = 0 |
|
for h in h_slices: |
|
for w in w_slices: |
|
img_mask[:, h, w, :] = cnt |
|
cnt += 1 |
|
|
|
mask_windows = window_partition(img_mask, self.window_size) |
|
mask_windows = mask_windows.view(-1, self.window_size * self.window_size) |
|
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) |
|
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0)) |
|
|
|
for blk in self.blocks: |
|
blk.H, blk.W = H, W |
|
if self.use_checkpoint: |
|
x = checkpoint.checkpoint(blk, x, attn_mask) |
|
else: |
|
x = blk(x, attn_mask) |
|
if self.downsample is not None: |
|
x_down = self.downsample(x, H, W) |
|
Wh, Ww = (H + 1) // 2, (W + 1) // 2 |
|
return x, H, W, x_down, Wh, Ww |
|
else: |
|
return x, H, W, x, H, W |
|
|
|
|
|
class PatchEmbed(nn.Module): |
|
""" Image to Patch Embedding |
|
|
|
Args: |
|
patch_size (int): Patch token size. Default: 4. |
|
in_channels (int): Number of input image channels. Default: 3. |
|
embed_dim (int): Number of linear projection output channels. Default: 96. |
|
norm_layer (nn.Module, optional): Normalization layer. Default: None |
|
""" |
|
|
|
def __init__(self, patch_size=4, in_channels=3, embed_dim=96, norm_layer=None): |
|
super().__init__() |
|
patch_size = to_2tuple(patch_size) |
|
self.patch_size = patch_size |
|
|
|
self.in_channels = in_channels |
|
self.embed_dim = embed_dim |
|
|
|
self.proj = nn.Conv2d(in_channels, embed_dim, kernel_size=patch_size, stride=patch_size) |
|
if norm_layer is not None: |
|
self.norm = norm_layer(embed_dim) |
|
else: |
|
self.norm = None |
|
|
|
def forward(self, x): |
|
"""Forward function.""" |
|
|
|
_, _, H, W = x.size() |
|
if W % self.patch_size[1] != 0: |
|
x = F.pad(x, (0, self.patch_size[1] - W % self.patch_size[1])) |
|
if H % self.patch_size[0] != 0: |
|
x = F.pad(x, (0, 0, 0, self.patch_size[0] - H % self.patch_size[0])) |
|
|
|
x = self.proj(x) |
|
if self.norm is not None: |
|
Wh, Ww = x.size(2), x.size(3) |
|
x = x.flatten(2).transpose(1, 2) |
|
x = self.norm(x) |
|
x = x.transpose(1, 2).view(-1, self.embed_dim, Wh, Ww) |
|
|
|
return x |
|
|
|
|
|
class SwinTransformer(nn.Module): |
|
""" Swin Transformer backbone. |
|
A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows` - |
|
https://arxiv.org/pdf/2103.14030 |
|
|
|
Args: |
|
pretrain_img_size (int): Input image size for training the pretrained model, |
|
used in absolute postion embedding. Default 224. |
|
patch_size (int | tuple(int)): Patch size. Default: 4. |
|
in_channels (int): Number of input image channels. Default: 3. |
|
embed_dim (int): Number of linear projection output channels. Default: 96. |
|
depths (tuple[int]): Depths of each Swin Transformer stage. |
|
num_heads (tuple[int]): Number of attention head of each stage. |
|
window_size (int): Window size. Default: 7. |
|
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4. |
|
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True |
|
qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. |
|
drop_rate (float): Dropout rate. |
|
attn_drop_rate (float): Attention dropout rate. Default: 0. |
|
drop_path_rate (float): Stochastic depth rate. Default: 0.2. |
|
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm. |
|
ape (bool): If True, add absolute position embedding to the patch embedding. Default: False. |
|
patch_norm (bool): If True, add normalization after patch embedding. Default: True. |
|
out_indices (Sequence[int]): Output from which stages. |
|
frozen_stages (int): Stages to be frozen (stop grad and set eval mode). |
|
-1 means not freezing any parameters. |
|
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False. |
|
""" |
|
|
|
def __init__(self, |
|
pretrain_img_size=224, |
|
patch_size=4, |
|
in_channels=3, |
|
embed_dim=96, |
|
depths=[2, 2, 6, 2], |
|
num_heads=[3, 6, 12, 24], |
|
window_size=7, |
|
mlp_ratio=4., |
|
qkv_bias=True, |
|
qk_scale=None, |
|
drop_rate=0., |
|
attn_drop_rate=0., |
|
drop_path_rate=0.2, |
|
norm_layer=nn.LayerNorm, |
|
ape=False, |
|
patch_norm=True, |
|
out_indices=(0, 1, 2, 3), |
|
frozen_stages=-1, |
|
use_checkpoint=False): |
|
super().__init__() |
|
|
|
self.pretrain_img_size = pretrain_img_size |
|
self.num_layers = len(depths) |
|
self.embed_dim = embed_dim |
|
self.ape = ape |
|
self.patch_norm = patch_norm |
|
self.out_indices = out_indices |
|
self.frozen_stages = frozen_stages |
|
|
|
|
|
self.patch_embed = PatchEmbed( |
|
patch_size=patch_size, in_channels=in_channels, embed_dim=embed_dim, |
|
norm_layer=norm_layer if self.patch_norm else None) |
|
|
|
|
|
if self.ape: |
|
pretrain_img_size = to_2tuple(pretrain_img_size) |
|
patch_size = to_2tuple(patch_size) |
|
patches_resolution = [pretrain_img_size[0] // patch_size[0], pretrain_img_size[1] // patch_size[1]] |
|
|
|
self.absolute_pos_embed = nn.Parameter(torch.zeros(1, embed_dim, patches_resolution[0], patches_resolution[1])) |
|
trunc_normal_(self.absolute_pos_embed, std=.02) |
|
|
|
self.pos_drop = nn.Dropout(p=drop_rate) |
|
|
|
|
|
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] |
|
|
|
|
|
self.layers = nn.ModuleList() |
|
for i_layer in range(self.num_layers): |
|
layer = BasicLayer( |
|
dim=int(embed_dim * 2 ** i_layer), |
|
depth=depths[i_layer], |
|
num_heads=num_heads[i_layer], |
|
window_size=window_size, |
|
mlp_ratio=mlp_ratio, |
|
qkv_bias=qkv_bias, |
|
qk_scale=qk_scale, |
|
drop=drop_rate, |
|
attn_drop=attn_drop_rate, |
|
drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])], |
|
norm_layer=norm_layer, |
|
downsample=PatchMerging if (i_layer < self.num_layers - 1) else None, |
|
use_checkpoint=use_checkpoint) |
|
self.layers.append(layer) |
|
|
|
num_features = [int(embed_dim * 2 ** i) for i in range(self.num_layers)] |
|
self.num_features = num_features |
|
|
|
|
|
for i_layer in out_indices: |
|
layer = norm_layer(num_features[i_layer]) |
|
layer_name = f'norm{i_layer}' |
|
self.add_module(layer_name, layer) |
|
|
|
self._freeze_stages() |
|
|
|
def _freeze_stages(self): |
|
if self.frozen_stages >= 0: |
|
self.patch_embed.eval() |
|
for param in self.patch_embed.parameters(): |
|
param.requires_grad = False |
|
|
|
if self.frozen_stages >= 1 and self.ape: |
|
self.absolute_pos_embed.requires_grad = False |
|
|
|
if self.frozen_stages >= 2: |
|
self.pos_drop.eval() |
|
for i in range(0, self.frozen_stages - 1): |
|
m = self.layers[i] |
|
m.eval() |
|
for param in m.parameters(): |
|
param.requires_grad = False |
|
|
|
|
|
def forward(self, x): |
|
"""Forward function.""" |
|
x = self.patch_embed(x) |
|
|
|
Wh, Ww = x.size(2), x.size(3) |
|
if self.ape: |
|
|
|
absolute_pos_embed = F.interpolate(self.absolute_pos_embed, size=(Wh, Ww), mode='bicubic') |
|
x = (x + absolute_pos_embed) |
|
|
|
outs = [] |
|
x = x.flatten(2).transpose(1, 2) |
|
x = self.pos_drop(x) |
|
for i in range(self.num_layers): |
|
layer = self.layers[i] |
|
x_out, H, W, x, Wh, Ww = layer(x, Wh, Ww) |
|
|
|
if i in self.out_indices: |
|
norm_layer = getattr(self, f'norm{i}') |
|
x_out = norm_layer(x_out) |
|
|
|
out = x_out.view(-1, H, W, self.num_features[i]).permute(0, 3, 1, 2).contiguous() |
|
outs.append(out) |
|
|
|
return tuple(outs) |
|
|
|
def train(self, mode=True): |
|
"""Convert the model into training mode while keep layers freezed.""" |
|
super(SwinTransformer, self).train(mode) |
|
self._freeze_stages() |
|
|
|
def swin_v1_t(): |
|
model = SwinTransformer(embed_dim=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24], window_size=7) |
|
return model |
|
|
|
def swin_v1_s(): |
|
model = SwinTransformer(embed_dim=96, depths=[2, 2, 18, 2], num_heads=[3, 6, 12, 24], window_size=7) |
|
return model |
|
|
|
def swin_v1_b(): |
|
model = SwinTransformer(embed_dim=128, depths=[2, 2, 18, 2], num_heads=[4, 8, 16, 32], window_size=12) |
|
return model |
|
|
|
def swin_v1_l(): |
|
model = SwinTransformer(embed_dim=192, depths=[2, 2, 18, 2], num_heads=[6, 12, 24, 48], window_size=12) |
|
return model |
|
|