|
import torch.nn as nn |
|
from models.modules.mlp import MLPLayer |
|
|
|
|
|
class BlockA(nn.Module): |
|
def __init__(self, in_channels=64, out_channels=64, inter_channels=64, mlp_ratio=4.): |
|
super(BlockA, self).__init__() |
|
inter_channels = in_channels |
|
self.conv = nn.Conv2d(in_channels, inter_channels, 3, 1, 1) |
|
self.norm1 = nn.LayerNorm(inter_channels) |
|
self.ffn = MLPLayer(in_features=inter_channels, |
|
hidden_features=int(inter_channels * mlp_ratio), |
|
act_layer=nn.GELU, |
|
drop=0.) |
|
self.norm2 = nn.LayerNorm(inter_channels) |
|
|
|
def forward(self, x): |
|
B, C, H, W = x.shape |
|
_x = self.conv(x) |
|
_x = _x.flatten(2).transpose(1, 2) |
|
_x = self.norm1(_x) |
|
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous() |
|
|
|
x = x + _x |
|
_x1 = self.ffn(x) |
|
_x1 = self.norm2(_x1) |
|
_x1 = _x1.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous() |
|
x = x + _x1 |
|
return x |