import torch.nn as nn | |
from models.modules.utils import build_act_layer, build_norm_layer | |
class StemLayer(nn.Module): | |
r""" Stem layer of InternImage | |
Args: | |
in_channels (int): number of input channels | |
out_channels (int): number of output channels | |
act_layer (str): activation layer | |
norm_layer (str): normalization layer | |
""" | |
def __init__(self, | |
in_channels=3+1, | |
inter_channels=48, | |
out_channels=96, | |
act_layer='GELU', | |
norm_layer='BN'): | |
super().__init__() | |
self.conv1 = nn.Conv2d(in_channels, | |
inter_channels, | |
kernel_size=3, | |
stride=1, | |
padding=1) | |
self.norm1 = build_norm_layer( | |
inter_channels, norm_layer, 'channels_first', 'channels_first' | |
) | |
self.act = build_act_layer(act_layer) | |
self.conv2 = nn.Conv2d(inter_channels, | |
out_channels, | |
kernel_size=3, | |
stride=1, | |
padding=1) | |
self.norm2 = build_norm_layer( | |
out_channels, norm_layer, 'channels_first', 'channels_first' | |
) | |
def forward(self, x): | |
x = self.conv1(x) | |
x = self.norm1(x) | |
x = self.act(x) | |
x = self.conv2(x) | |
x = self.norm2(x) | |
return x | |