import os | |
import cv2 | |
from tqdm import tqdm | |
from PIL import Image | |
from torch.utils import data | |
from torchvision import transforms | |
from preproc import preproc | |
from config import Config | |
Image.MAX_IMAGE_PIXELS = None # remove DecompressionBombWarning | |
config = Config() | |
_class_labels_TR_sorted = 'Airplane, Ant, Antenna, Archery, Axe, BabyCarriage, Bag, BalanceBeam, Balcony, Balloon, Basket, BasketballHoop, Beatle, Bed, Bee, Bench, Bicycle, BicycleFrame, BicycleStand, Boat, Bonsai, BoomLift, Bridge, BunkBed, Butterfly, Button, Cable, CableLift, Cage, Camcorder, Cannon, Canoe, Car, CarParkDropArm, Carriage, Cart, Caterpillar, CeilingLamp, Centipede, Chair, Clip, Clock, Clothes, CoatHanger, Comb, ConcretePumpTruck, Crack, Crane, Cup, DentalChair, Desk, DeskChair, Diagram, DishRack, DoorHandle, Dragonfish, Dragonfly, Drum, Earphone, Easel, ElectricIron, Excavator, Eyeglasses, Fan, Fence, Fencing, FerrisWheel, FireExtinguisher, Fishing, Flag, FloorLamp, Forklift, GasStation, Gate, Gear, Goal, Golf, GymEquipment, Hammock, Handcart, Handcraft, Handrail, HangGlider, Harp, Harvester, Headset, Helicopter, Helmet, Hook, HorizontalBar, Hydrovalve, IroningTable, Jewelry, Key, KidsPlayground, Kitchenware, Kite, Knife, Ladder, LaundryRack, Lightning, Lobster, Locust, Machine, MachineGun, MagazineRack, Mantis, Medal, MemorialArchway, Microphone, Missile, MobileHolder, Monitor, Mosquito, Motorcycle, MovingTrolley, Mower, MusicPlayer, MusicStand, ObservationTower, Octopus, OilWell, OlympicLogo, OperatingTable, OutdoorFitnessEquipment, Parachute, Pavilion, Piano, Pipe, PlowHarrow, PoleVault, Punchbag, Rack, Racket, Rifle, Ring, Robot, RockClimbing, Rope, Sailboat, Satellite, Scaffold, Scale, Scissor, Scooter, Sculpture, Seadragon, Seahorse, Seal, SewingMachine, Ship, Shoe, ShoppingCart, ShoppingTrolley, Shower, Shrimp, Signboard, Skateboarding, Skeleton, Skiing, Spade, SpeedBoat, Spider, Spoon, Stair, Stand, Stationary, SteeringWheel, Stethoscope, Stool, Stove, StreetLamp, SweetStand, Swing, Sword, TV, Table, TableChair, TableLamp, TableTennis, Tank, Tapeline, Teapot, Telescope, Tent, TobaccoPipe, Toy, Tractor, TrafficLight, TrafficSign, Trampoline, TransmissionTower, Tree, Tricycle, TrimmerCover, Tripod, Trombone, Truck, Trumpet, Tuba, UAV, Umbrella, UnevenBars, UtilityPole, VacuumCleaner, Violin, Wakesurfing, Watch, WaterTower, WateringPot, Well, WellLid, Wheel, Wheelchair, WindTurbine, Windmill, WineGlass, WireWhisk, Yacht' | |
class_labels_TR_sorted = _class_labels_TR_sorted.split(', ') | |
class MyData(data.Dataset): | |
def __init__(self, data_root, image_size, is_train=True): | |
self.size_train = image_size | |
self.size_test = image_size | |
self.keep_size = not config.size | |
self.data_size = (config.size, config.size) | |
self.is_train = is_train | |
self.load_all = config.load_all | |
self.device = config.device | |
self.dataset = data_root.replace('\\', '/').split('/')[-1] | |
if self.is_train and config.auxiliary_classification: | |
self.cls_name2id = {_name: _id for _id, _name in enumerate(class_labels_TR_sorted)} | |
self.transform_image = transforms.Compose([ | |
transforms.Resize(self.data_size), | |
transforms.ToTensor(), | |
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), | |
][self.load_all or self.keep_size:]) | |
self.transform_label = transforms.Compose([ | |
transforms.Resize(self.data_size), | |
transforms.ToTensor(), | |
][self.load_all or self.keep_size:]) | |
## 'im' and 'gt' need modifying | |
image_root = os.path.join(data_root, 'im') | |
self.image_paths = [os.path.join(image_root, p) for p in os.listdir(image_root)] | |
self.label_paths = [p.replace('/im/', '/gt/').replace('.jpg', '.png') for p in self.image_paths] | |
if self.load_all: | |
self.images_loaded, self.labels_loaded = [], [] | |
self.class_labels_loaded = [] | |
# for image_path, label_path in zip(self.image_paths, self.label_paths): | |
for image_path, label_path in tqdm(zip(self.image_paths, self.label_paths), total=len(self.image_paths)): | |
_image = cv2.imread(image_path) | |
_label = cv2.imread(label_path, cv2.IMREAD_GRAYSCALE) | |
if not self.keep_size: | |
_image_rs = cv2.resize(_image, (config.size, config.size), interpolation=cv2.INTER_LINEAR) | |
_label_rs = cv2.resize(_label, (config.size, config.size), interpolation=cv2.INTER_LINEAR) | |
self.images_loaded.append( | |
Image.fromarray(cv2.cvtColor(_image_rs, cv2.COLOR_BGR2RGB)).convert('RGB') | |
) | |
self.labels_loaded.append( | |
Image.fromarray(_label_rs).convert('L') | |
) | |
self.class_labels_loaded.append( | |
self.cls_name2id[label_path.split('/')[-1].split('#')[3]] if self.is_train and config.auxiliary_classification else -1 | |
) | |
def __getitem__(self, index): | |
if self.load_all: | |
image = self.images_loaded[index] | |
label = self.labels_loaded[index] | |
class_label = self.class_labels_loaded[index] if self.is_train and config.auxiliary_classification else -1 | |
else: | |
image = Image.open(self.image_paths[index]).convert('RGB') | |
label = Image.open(self.label_paths[index]).convert('L') | |
class_label = self.cls_name2id[self.label_paths[index].split('/')[-1].split('#')[3]] if self.is_train and config.auxiliary_classification else -1 | |
# loading image and label | |
if self.is_train: | |
image, label = preproc(image, label, preproc_methods=config.preproc_methods) | |
# else: | |
# if _label.shape[0] > 2048 or _label.shape[1] > 2048: | |
# _image = cv2.resize(_image, (2048, 2048), interpolation=cv2.INTER_LINEAR) | |
# _label = cv2.resize(_label, (2048, 2048), interpolation=cv2.INTER_LINEAR) | |
image, label = self.transform_image(image), self.transform_label(label) | |
if self.is_train: | |
return image, label, class_label | |
else: | |
return image, label, self.label_paths[index] | |
def __len__(self): | |
return len(self.image_paths) | |