|
import torch |
|
import torch.nn as nn |
|
from collections import OrderedDict |
|
from torchvision.models import vgg16, vgg16_bn, VGG16_Weights, VGG16_BN_Weights, resnet50, ResNet50_Weights |
|
from models.backbones.pvt_v2 import pvt_v2_b2, pvt_v2_b5 |
|
from models.backbones.swin_v1 import swin_v1_t, swin_v1_s, swin_v1_b, swin_v1_l |
|
from config import Config |
|
|
|
|
|
config = Config() |
|
|
|
def build_backbone(bb_name, pretrained=True, params_settings=''): |
|
if bb_name == 'vgg16': |
|
bb_net = list(vgg16(pretrained=VGG16_Weights.DEFAULT if pretrained else None).children())[0] |
|
bb = nn.Sequential(OrderedDict({'conv1': bb_net[:4], 'conv2': bb_net[4:9], 'conv3': bb_net[9:16], 'conv4': bb_net[16:23]})) |
|
elif bb_name == 'vgg16bn': |
|
bb_net = list(vgg16_bn(pretrained=VGG16_BN_Weights.DEFAULT if pretrained else None).children())[0] |
|
bb = nn.Sequential(OrderedDict({'conv1': bb_net[:6], 'conv2': bb_net[6:13], 'conv3': bb_net[13:23], 'conv4': bb_net[23:33]})) |
|
elif bb_name == 'resnet50': |
|
bb_net = list(resnet50(pretrained=ResNet50_Weights.DEFAULT if pretrained else None).children()) |
|
bb = nn.Sequential(OrderedDict({'conv1': nn.Sequential(*bb_net[0:3]), 'conv2': bb_net[4], 'conv3': bb_net[5], 'conv4': bb_net[6]})) |
|
else: |
|
bb = eval('{}({})'.format(bb_name, params_settings)) |
|
if pretrained: |
|
bb = load_weights(bb, bb_name) |
|
return bb |
|
|
|
def load_weights(model, model_name): |
|
save_model = torch.load(config.weights[model_name]) |
|
model_dict = model.state_dict() |
|
state_dict = {k: v if v.size() == model_dict[k].size() else model_dict[k] for k, v in save_model.items() if k in model_dict.keys()} |
|
|
|
if not state_dict: |
|
save_model_keys = list(save_model.keys()) |
|
sub_item = save_model_keys[0] if len(save_model_keys) == 1 else None |
|
state_dict = {k: v if v.size() == model_dict[k].size() else model_dict[k] for k, v in save_model[sub_item].items() if k in model_dict.keys()} |
|
if not state_dict or not sub_item: |
|
print('Weights are not successully loaded. Check the state dict of weights file.') |
|
return None |
|
else: |
|
print('Found correct weights in the "{}" item of loaded state_dict.'.format(sub_item)) |
|
model_dict.update(state_dict) |
|
model.load_state_dict(model_dict) |
|
return model |
|
|