File size: 24,174 Bytes
78506fe
 
 
 
 
c53d44b
95bdd33
0b30521
 
 
 
78506fe
0b30521
0b744ad
 
0b30521
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78506fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2dd5330
 
0b30521
2dd5330
 
 
78506fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e33e382
 
 
 
 
78506fe
95bdd33
78506fe
95bdd33
 
 
08456a1
95bdd33
 
78506fe
 
 
 
95bdd33
78506fe
 
 
 
 
 
 
 
 
 
 
95bdd33
78506fe
95bdd33
c53d44b
78506fe
 
 
 
 
 
 
 
 
 
 
 
 
95bdd33
78506fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d36da76
95bdd33
 
 
 
 
 
 
78506fe
95bdd33
 
78506fe
 
 
 
 
 
95bdd33
78506fe
 
 
 
5edca44
0140766
 
 
 
 
 
 
 
 
 
 
 
45523be
0140766
 
 
 
 
 
 
 
 
1e4c24f
45523be
0b30521
e33e382
 
e2eb8eb
45523be
e33e382
45523be
 
 
e2eb8eb
 
 
 
 
 
 
 
 
 
 
 
 
e33e382
 
 
 
 
 
 
 
 
 
 
e2eb8eb
 
 
 
e33e382
e2eb8eb
 
78506fe
e33e382
 
 
 
 
 
e2eb8eb
 
45523be
e2eb8eb
 
78506fe
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
import gradio as gr
import random
import json
import os
import re
from datetime import datetime
from huggingface_hub import InferenceClient
import subprocess
import torch
from PIL import Image
from transformers import AutoProcessor, AutoModelForCausalLM

subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)

huggingface_token = os.getenv("HUGGINGFACE_TOKEN")


# Initialize Florence model
device = "cuda" if torch.cuda.is_available() else "cpu"
florence_model = AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True).to(device).eval()
florence_processor = AutoProcessor.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True)

# Florence caption function
def florence_caption(image):
    if not isinstance(image, Image.Image):
        image = Image.fromarray(image)
    
    inputs = florence_processor(text="<MORE_DETAILED_CAPTION>", images=image, return_tensors="pt").to(device)
    generated_ids = florence_model.generate(
        input_ids=inputs["input_ids"],
        pixel_values=inputs["pixel_values"],
        max_new_tokens=1024,
        early_stopping=False,
        do_sample=False,
        num_beams=3,
    )
    generated_text = florence_processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
    parsed_answer = florence_processor.post_process_generation(
        generated_text,
        task="<MORE_DETAILED_CAPTION>",
        image_size=(image.width, image.height)
    )
    return parsed_answer["<MORE_DETAILED_CAPTION>"]
    
# Load JSON files
def load_json_file(file_name):
    file_path = os.path.join("data", file_name)
    with open(file_path, "r") as file:
        return json.load(file)

ARTFORM = load_json_file("artform.json")
PHOTO_TYPE = load_json_file("photo_type.json")
BODY_TYPES = load_json_file("body_types.json")
DEFAULT_TAGS = load_json_file("default_tags.json")
ROLES = load_json_file("roles.json")
HAIRSTYLES = load_json_file("hairstyles.json")
ADDITIONAL_DETAILS = load_json_file("additional_details.json")
PHOTOGRAPHY_STYLES = load_json_file("photography_styles.json")
DEVICE = load_json_file("device.json")
PHOTOGRAPHER = load_json_file("photographer.json")
ARTIST = load_json_file("artist.json")
DIGITAL_ARTFORM = load_json_file("digital_artform.json")
PLACE = load_json_file("place.json")
LIGHTING = load_json_file("lighting.json")
CLOTHING = load_json_file("clothing.json")
COMPOSITION = load_json_file("composition.json")
POSE = load_json_file("pose.json")
BACKGROUND = load_json_file("background.json")

class PromptGenerator:
    def __init__(self, seed=None):
        self.rng = random.Random(seed)

    def split_and_choose(self, input_str):
        choices = [choice.strip() for choice in input_str.split(",")]
        return self.rng.choices(choices, k=1)[0]

    def get_choice(self, input_str, default_choices):
        if input_str.lower() == "disabled":
            return ""
        elif "," in input_str:
            return self.split_and_choose(input_str)
        elif input_str.lower() == "random":
            return self.rng.choices(default_choices, k=1)[0]
        else:
            return input_str

    def clean_consecutive_commas(self, input_string):
        cleaned_string = re.sub(r',\s*,', ',', input_string)
        return cleaned_string

    def process_string(self, replaced, seed):
        replaced = re.sub(r'\s*,\s*', ',', replaced)
        replaced = re.sub(r',+', ',', replaced)
        original = replaced
        
        first_break_clipl_index = replaced.find("BREAK_CLIPL")
        second_break_clipl_index = replaced.find("BREAK_CLIPL", first_break_clipl_index + len("BREAK_CLIPL"))
        
        if first_break_clipl_index != -1 and second_break_clipl_index != -1:
            clip_content_l = replaced[first_break_clipl_index + len("BREAK_CLIPL"):second_break_clipl_index]
            replaced = replaced[:first_break_clipl_index].strip(", ") + replaced[second_break_clipl_index + len("BREAK_CLIPL"):].strip(", ")
            clip_l = clip_content_l
        else:
            clip_l = ""
        
        first_break_clipg_index = replaced.find("BREAK_CLIPG")
        second_break_clipg_index = replaced.find("BREAK_CLIPG", first_break_clipg_index + len("BREAK_CLIPG"))
        
        if first_break_clipg_index != -1 and second_break_clipg_index != -1:
            clip_content_g = replaced[first_break_clipg_index + len("BREAK_CLIPG"):second_break_clipg_index]
            replaced = replaced[:first_break_clipg_index].strip(", ") + replaced[second_break_clipg_index + len("BREAK_CLIPG"):].strip(", ")
            clip_g = clip_content_g
        else:
            clip_g = ""
        
        t5xxl = replaced
        
        original = original.replace("BREAK_CLIPL", "").replace("BREAK_CLIPG", "")
        original = re.sub(r'\s*,\s*', ',', original)
        original = re.sub(r',+', ',', original)
        clip_l = re.sub(r'\s*,\s*', ',', clip_l)
        clip_l = re.sub(r',+', ',', clip_l)
        clip_g = re.sub(r'\s*,\s*', ',', clip_g)
        clip_g = re.sub(r',+', ',', clip_g)
        if clip_l.startswith(","):
            clip_l = clip_l[1:]
        if clip_g.startswith(","):
            clip_g = clip_g[1:]
        if original.startswith(","):
            original = original[1:]
        if t5xxl.startswith(","):
            t5xxl = t5xxl[1:]

        return original, seed, t5xxl, clip_l, clip_g

    def generate_prompt(self, seed, custom, subject, artform, photo_type, body_types, default_tags, roles, hairstyles,
                        additional_details, photography_styles, device, photographer, artist, digital_artform,
                        place, lighting, clothing, composition, pose, background, input_image):
        kwargs = locals()
        del kwargs['self']
        
        seed = kwargs.get("seed", 0)
        if seed is not None:
            self.rng = random.Random(seed)
        components = []
        custom = kwargs.get("custom", "")
        if custom:
            components.append(custom)
        is_photographer = kwargs.get("artform", "").lower() == "photography" or (
            kwargs.get("artform", "").lower() == "random"
            and self.rng.choice([True, False])
        )

        subject = kwargs.get("subject", "")

        if is_photographer:
            selected_photo_style = self.get_choice(kwargs.get("photography_styles", ""), PHOTOGRAPHY_STYLES)
            if not selected_photo_style:
                selected_photo_style = "photography"
            components.append(selected_photo_style)
            if kwargs.get("photography_style", "") != "disabled" and kwargs.get("default_tags", "") != "disabled" or subject != "":
                components.append(" of")
        
        default_tags = kwargs.get("default_tags", "random")
        body_type = kwargs.get("body_types", "")
        if not subject:
            if default_tags == "random":
                if body_type != "disabled" and body_type != "random":
                    selected_subject = self.get_choice(kwargs.get("default_tags", ""), DEFAULT_TAGS).replace("a ", "").replace("an ", "")
                    components.append("a ")
                    components.append(body_type)
                    components.append(selected_subject)
                elif body_type == "disabled":
                    selected_subject = self.get_choice(kwargs.get("default_tags", ""), DEFAULT_TAGS)
                    components.append(selected_subject)
                else:
                    body_type = self.get_choice(body_type, BODY_TYPES)
                    components.append("a ")
                    components.append(body_type)
                    selected_subject = self.get_choice(kwargs.get("default_tags", ""), DEFAULT_TAGS).replace("a ", "").replace("an ", "")
                    components.append(selected_subject)
            elif default_tags == "disabled":
                pass
            else:
                components.append(default_tags)
        else:
            if body_type != "disabled" and body_type != "random":
                components.append("a ")
                components.append(body_type)
            elif body_type == "disabled":
                pass
            else:
                body_type = self.get_choice(body_type, BODY_TYPES)
                components.append("a ")
                components.append(body_type)
            components.append(subject)

        params = [
            ("roles", ROLES),
            ("hairstyles", HAIRSTYLES),
            ("additional_details", ADDITIONAL_DETAILS),
        ]
        for param in params:
            components.append(self.get_choice(kwargs.get(param[0], ""), param[1]))
        for i in reversed(range(len(components))):
            if components[i] in PLACE:
                components[i] += ","
                break
        if kwargs.get("clothing", "") != "disabled" and kwargs.get("clothing", "") != "random":
            components.append(", dressed in ")
            clothing = kwargs.get("clothing", "")
            components.append(clothing)
        elif kwargs.get("clothing", "") == "random":
            components.append(", dressed in ")
            clothing = self.get_choice(kwargs.get("clothing", ""), CLOTHING)
            components.append(clothing)

        if kwargs.get("composition", "") != "disabled" and kwargs.get("composition", "") != "random":
            components.append(",")
            composition = kwargs.get("composition", "")
            components.append(composition)
        elif kwargs.get("composition", "") == "random": 
            components.append(",")
            composition = self.get_choice(kwargs.get("composition", ""), COMPOSITION)
            components.append(composition)
        
        if kwargs.get("pose", "") != "disabled" and kwargs.get("pose", "") != "random":
            components.append(",")
            pose = kwargs.get("pose", "")
            components.append(pose)
        elif kwargs.get("pose", "") == "random":
            components.append(",")
            pose = self.get_choice(kwargs.get("pose", ""), POSE)
            components.append(pose)
        components.append("BREAK_CLIPG")
        if kwargs.get("background", "") != "disabled" and kwargs.get("background", "") != "random":
            components.append(",")
            background = kwargs.get("background", "")
            components.append(background)
        elif kwargs.get("background", "") == "random": 
            components.append(",")
            background = self.get_choice(kwargs.get("background", ""), BACKGROUND)
            components.append(background)

        if kwargs.get("place", "") != "disabled" and kwargs.get("place", "") != "random":
            components.append(",")
            place = kwargs.get("place", "")
            components.append(place)
        elif kwargs.get("place", "") == "random": 
            components.append(",")
            place = self.get_choice(kwargs.get("place", ""), PLACE)
            components.append(place + ",")

        lighting = kwargs.get("lighting", "").lower()
        if lighting == "random":
            selected_lighting = ", ".join(self.rng.sample(LIGHTING, self.rng.randint(2, 5)))
            components.append(",")
            components.append(selected_lighting)
        elif lighting == "disabled":
            pass
        else:
            components.append(", ")
            components.append(lighting)
        components.append("BREAK_CLIPG")
        components.append("BREAK_CLIPL")
        if is_photographer:
            if kwargs.get("photo_type", "") != "disabled":
                photo_type_choice = self.get_choice(kwargs.get("photo_type", ""), PHOTO_TYPE)
                if photo_type_choice and photo_type_choice != "random" and photo_type_choice != "disabled":
                    random_value = round(self.rng.uniform(1.1, 1.5), 1)
                    components.append(f", ({photo_type_choice}:{random_value}), ")

            params = [
                ("device", DEVICE),
                ("photographer", PHOTOGRAPHER),
            ]
            components.extend([self.get_choice(kwargs.get(param[0], ""), param[1]) for param in params])
            if kwargs.get("device", "") != "disabled":
                components[-2] = f", shot on {components[-2]}"
            if kwargs.get("photographer", "") != "disabled":
                components[-1] = f", photo by {components[-1]}"
        else:
            digital_artform_choice = self.get_choice(kwargs.get("digital_artform", ""), DIGITAL_ARTFORM)
            if digital_artform_choice:
                components.append(f"{digital_artform_choice}")
            if kwargs.get("artist", "") != "disabled":
                components.append(f"by {self.get_choice(kwargs.get('artist', ''), ARTIST)}")
        components.append("BREAK_CLIPL")

        prompt = " ".join(components)
        prompt = re.sub(" +", " ", prompt)
        replaced = prompt.replace("of as", "of")
        replaced = self.clean_consecutive_commas(replaced)

        return self.process_string(replaced, seed)
    
    def add_caption_to_prompt(self, prompt, caption):
        if caption:
            return f"{prompt} {caption}"
        return prompt

class HuggingFaceInferenceNode:
    def __init__(self):
        self.clients = {
            "Mixtral": InferenceClient("NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO"),
            "Mistral": InferenceClient("mistralai/Mistral-7B-Instruct-v0.3"),
            "Llama 3": InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct"),
            "Mistral-Nemo": InferenceClient("mistralai/Mistral-Nemo-Instruct-2407")
        }
        self.prompts_dir = "./prompts"
        os.makedirs(self.prompts_dir, exist_ok=True)

    def save_prompt(self, prompt):
        filename_text = "hf_" + prompt.split(',')[0].strip()
        filename_text = re.sub(r'[^\w\-_\. ]', '_', filename_text)
        filename_text = filename_text[:30]  
        timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
        base_filename = f"{filename_text}_{timestamp}.txt"
        filename = os.path.join(self.prompts_dir, base_filename)
        
        with open(filename, "w") as file:
            file.write(prompt)
        
        print(f"Prompt saved to {filename}")

    def generate(self, model, input_text, happy_talk, compress, compression_level, poster, custom_base_prompt=""):
        try:
            client = self.clients[model]

            default_happy_prompt = """Create a detailed visually descriptive caption of this description, which will be used as a prompt for a text to image AI system (caption only, no instructions like "create an image").Remove any mention of digital artwork or artwork style. Give detailed visual descriptions of the character(s), including ethnicity, skin tone, expression etc. Imagine using keywords for a still for someone who has aphantasia. Describe the image style, e.g. any photographic or art styles / techniques utilized. Make sure to fully describe all aspects of the cinematography, with abundant technical details and visual descriptions. If there is more than one image, combine the elements and characters from all of the images creatively into a single cohesive composition with a single background, inventing an interaction between the characters. Be creative in combining the characters into a single cohesive scene. Focus on two primary characters (or one) and describe an interesting interaction between them, such as a hug, a kiss, a fight, giving an object, an emotional reaction / interaction. If there is more than one background in the images, pick the most appropriate one. Your output is only the caption itself, no comments or extra formatting. The caption is in a single long paragraph. If you feel the images are inappropriate, invent a new scene / characters inspired by these. Additionally, incorporate a specific movie director's visual style (e.g. Wes Anderson, Christopher Nolan, Quentin Tarantino) and describe the lighting setup in detail, including the type, color, and placement of light sources to create the desired mood and atmosphere. Always frame the scene as a screen grab from a 35mm film still, including details about the film grain, color grading, and any artifacts or characteristics specific to 35mm film photography."""

            default_simple_prompt = """Create a brief, straightforward caption for this description, suitable for a text-to-image AI system. Focus on the main elements, key characters, and overall scene without elaborate details. Provide a clear and concise description in one or two sentences."""

            poster_prompt = """Analyze the provided description and extract key information to create a movie poster style description. Format the output as follows:

Title: A catchy, intriguing title that captures the essence of the scene, place the title in "".
Main character: Give a description of the main character.
Background: Describe the background in detail.
Supporting characters: Describe the supporting characters
Branding type: Describe the branding type
Tagline: Include a tagline that captures the essence of the movie.
Visual style: Ensure that the visual style fits the branding type and tagline.
You are allowed to make up film and branding names, and do them like 80's, 90's or modern movie posters."""

            if poster:
                base_prompt = poster_prompt
            elif custom_base_prompt.strip():
                base_prompt = custom_base_prompt
            else:
                base_prompt = default_happy_prompt if happy_talk else default_simple_prompt

            if compress and not poster:
                compression_chars = {
                    "soft": 600 if happy_talk else 300,
                    "medium": 400 if happy_talk else 200,
                    "hard": 200 if happy_talk else 100
                }
                char_limit = compression_chars[compression_level]
                base_prompt += f" Compress the output to be concise while retaining key visual details. MAX OUTPUT SIZE no more than {char_limit} characters."

            messages = f"<|im_start|>system\nYou are a helpful assistant. Try your best to give best response possible to user.<|im_end|>"
            messages += f"\n<|im_start|>user\n{base_prompt}\nDescription: {input_text}<|im_end|>\n<|im_start|>assistant\n"

            stream = client.text_generation(messages, max_new_tokens=4000, do_sample=True, stream=True, details=True, return_full_text=False)
            output = ""
            for response in stream:
                if not response.token.text == "<|im_end|>":
                    output += response.token.text
            
            self.save_prompt(output)
            return output
        except Exception as e:
            print(f"An error occurred: {e}")
            return f"Error occurred while processing the request: {str(e)}"

def create_interface():
    prompt_generator = PromptGenerator()
    huggingface_node = HuggingFaceInferenceNode()

    with gr.Blocks() as demo:
        gr.Markdown("# AI Prompt Generator and Text Generator")

        with gr.Row():
            with gr.Column():
                seed = gr.Number(label="Seed", value=0)
                custom = gr.Textbox(label="Custom")
                subject = gr.Textbox(label="Subject")
                artform = gr.Dropdown(["disabled", "random"] + ARTFORM, label="Artform", value="photography")
                photo_type = gr.Dropdown(["disabled", "random"] + PHOTO_TYPE, label="Photo Type", value="random")
                body_types = gr.Dropdown(["disabled", "random"] + BODY_TYPES, label="Body Types", value="random")
                default_tags = gr.Dropdown(["disabled", "random"] + DEFAULT_TAGS, label="Default Tags", value="random")
                roles = gr.Dropdown(["disabled", "random"] + ROLES, label="Roles", value="random")
                hairstyles = gr.Dropdown(["disabled", "random"] + HAIRSTYLES, label="Hairstyles", value="random")
                additional_details = gr.Dropdown(["disabled", "random"] + ADDITIONAL_DETAILS, label="Additional Details", value="random")
                photography_styles = gr.Dropdown(["disabled", "random"] + PHOTOGRAPHY_STYLES, label="Photography Styles", value="random")
            with gr.Column():                
                device = gr.Dropdown(["disabled", "random"] + DEVICE, label="Device", value="random")
                photographer = gr.Dropdown(["disabled", "random"] + PHOTOGRAPHER, label="Photographer", value="random")
                artist = gr.Dropdown(["disabled", "random"] + ARTIST, label="Artist", value="random")
                digital_artform = gr.Dropdown(["disabled", "random"] + DIGITAL_ARTFORM, label="Digital Artform", value="random")
                place = gr.Dropdown(["disabled", "random"] + PLACE, label="Place", value="random")
                lighting = gr.Dropdown(["disabled", "random"] + LIGHTING, label="Lighting", value="random")
                clothing = gr.Dropdown(["disabled", "random"] + CLOTHING, label="Clothing", value="random")
                composition = gr.Dropdown(["disabled", "random"] + COMPOSITION, label="Composition", value="random")
                pose = gr.Dropdown(["disabled", "random"] + POSE, label="Pose", value="random")
                background = gr.Dropdown(["disabled", "random"] + BACKGROUND, label="Background", value="random")
            with gr.Column():
                input_image = gr.Image(label="Input Image (optional)")
                caption_output = gr.Textbox(label="Generated Caption", lines=3)
                create_caption_button = gr.Button("Create Caption")
                generate_button = gr.Button("Generate Prompt")
                output = gr.Textbox(label="Generated Prompt / Input Text", lines=5)
                add_caption_button = gr.Button("Add Caption to Prompt")
                t5xxl_output = gr.Textbox(label="T5XXL Output", visible=True)
                clip_l_output = gr.Textbox(label="CLIP L Output", visible=True)
                clip_g_output = gr.Textbox(label="CLIP G Output", visible=True)

            with gr.Column():
                # HuggingFace Inference Text Generator inputs
                model = gr.Dropdown(["Mixtral", "Mistral", "Llama 3", "Mistral-Nemo"], label="Model", value="Mixtral")
                happy_talk = gr.Checkbox(label="Happy Talk", value=True)
                compress = gr.Checkbox(label="Compress", value=False)
                compression_level = gr.Radio(["soft", "medium", "hard"], label="Compression Level", value="medium")
                poster = gr.Checkbox(label="Poster", value=False)
                custom_base_prompt = gr.Textbox(label="Custom Base Prompt", lines=5)

                generate_text_button = gr.Button("Generate Text")
                text_output = gr.Textbox(label="Generated Text", lines=10)

        def create_caption(image):
            if image is not None:
                return florence_caption(image)
            return ""

        create_caption_button.click(
            create_caption,
            inputs=[input_image],
            outputs=[caption_output]
        )

        generate_button.click(
            prompt_generator.generate_prompt,
            inputs=[seed, custom, subject, artform, photo_type, body_types, default_tags, roles, hairstyles,
                    additional_details, photography_styles, device, photographer, artist, digital_artform,
                    place, lighting, clothing, composition, pose, background],
            outputs=[output, gr.Number(visible=False), t5xxl_output, clip_l_output, clip_g_output]
        )

        add_caption_button.click(
            prompt_generator.add_caption_to_prompt,
            inputs=[output, caption_output],
            outputs=[output]
        )

        generate_text_button.click(
            huggingface_node.generate,
            inputs=[model, output, happy_talk, compress, compression_level, poster, custom_base_prompt],
            outputs=text_output
        )

    return demo

if __name__ == "__main__":
    demo = create_interface()
    demo.launch()