SDXL-Lightning / app.py
PeterL1n's picture
Update app.py
0b120d5 verified
raw
history blame
4.52 kB
import gradio as gr
import torch
import spaces
from diffusers import StableDiffusionXLPipeline, UNet2DConditionModel, EulerDiscreteScheduler
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
from PIL import Image
assert torch.cuda.is_available()
device = "cuda"
dtype = torch.float16
base = "stabilityai/stable-diffusion-xl-base-1.0"
repo = "ByteDance/SDXL-Lightning"
opts = {
"1 Step" : ("sdxl_lightning_1step_unet_x0.safetensors", 1),
"2 Steps" : ("sdxl_lightning_2step_unet.safetensors", 2),
"4 Steps" : ("sdxl_lightning_4step_unet.safetensors", 4),
"8 Steps" : ("sdxl_lightning_8step_unet.safetensors", 8),
}
# Default to load 4-step model.
step_loaded = 4
unet = UNet2DConditionModel.from_config(base, subfolder="unet")
unet.load_state_dict(load_file(hf_hub_download(repo, opts["4 Steps"][0])))
pipe = StableDiffusionXLPipeline.from_pretrained(base, unet=unet, torch_dtype=dtype, variant="fp16").to(device, dtype)
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
with open("filter.txt") as f:
filter_words = {word for word in f.read().split("\n") if word}
# Inference function.
@spaces.GPU(enable_queue=True)
def generate(prompt, option, progress=gr.Progress()):
global step_loaded
print(prompt, option)
ckpt, step = opts[option]
if any(word in prompt for word in filter_words):
gr.Warning("Safety checker triggered.")
print(f"Safety checker triggered on prompt: {prompt}")
return Image.new("RGB", (512, 512))
progress((0, step))
if step != step_loaded:
print(f"Switching checkpoint from {step_loaded} to {step}")
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing", prediction_type="sample" if step == 1 else "epsilon")
pipe.unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device=device))
step_loaded = step
def inference_callback(p, i, t, kwargs):
progress((i+1, step))
return kwargs
results = pipe(prompt, num_inference_steps=step, guidance_scale=0, callback_on_step_end=inference_callback)
nsfw_content_detected = (
results.nsfw_content_detected[0]
if "nsfw_content_detected" in results
else False
)
if nsfw_content_detected:
gr.Warning("Safety checker triggered.")
print(f"Safety checker triggered on prompt: {prompt}")
return Image.new("RGB", (512, 512))
return results.images[0]
with gr.Blocks(css="style.css") as demo:
gr.HTML(
"<h1><center>SDXL-Lightning</center></h1>" +
"<p><center>Lightning-fast text-to-image generation</center></p>" +
"<p><center><a href='https://huggingface.co/ByteDance/SDXL-Lightning'>https://huggingface.co/ByteDance/SDXL-Lightning</a></center></p>"
)
with gr.Row():
prompt = gr.Textbox(
label="Text prompt",
scale=8
)
option = gr.Dropdown(
label="Inference steps",
choices=["1 Step", "2 Steps", "4 Steps", "8 Steps"],
value="4 Steps",
interactive=True
)
submit = gr.Button(
scale=1,
variant="primary"
)
img = gr.Image(label="SDXL-Lightning Generated Image")
prompt.submit(
fn=generate,
inputs=[prompt, option],
outputs=img,
)
submit.click(
fn=generate,
inputs=[prompt, option],
outputs=img,
)
gr.Examples(
fn=generate,
examples=[
["An owl perches quietly on a twisted branch deep within an ancient forest.", "1 Step"],
["A lion in the galaxy, octane render", "2 Steps"],
["A dolphin leaps through the waves, set against a backdrop of bright blues and teal hues.", "2 Steps"],
["A girl smiling", "4 Steps"],
["An astronaut riding a horse", "4 Steps"],
["A fish on a bicycle, colorful art", "4 Steps"],
["A close-up of an Asian lady with sunglasses.", "4 Steps"],
["Man portrait, ethereal", "8 Steps"],
["Rabbit portrait in a forest, fantasy", "8 Steps"],
["A panda swimming", "8 Steps"],
],
inputs=[prompt, option],
outputs=img,
cache_examples=True,
)
gr.HTML(
"<p><small><center>This demo is built together by the community</center></small></p>"
)
demo.queue().launch()