import gradio as gr import torch import spaces from diffusers import StableDiffusionXLPipeline, EulerDiscreteScheduler from huggingface_hub import hf_hub_download from safetensors.torch import load_file device = "cuda" if torch.cuda.is_available() else "cpu" base = "stabilityai/stable-diffusion-xl-base-1.0" repo = "ByteDance/SDXL-Lightning" opts = { "1 Step" : ["sdxl_lightning_1step_unet_x0.safetensors", 1], "2 Steps" : ["sdxl_lightning_2step_unet.safetensors", 2], "4 Steps" : ["sdxl_lightning_4step_unet.safetensors", 4], "8 Steps" : ["sdxl_lightning_8step_unet.safetensors", 8], } pipe = StableDiffusionXLPipeline.from_pretrained(base, torch_dtype=torch.float16, variant="fp16").to(device) last_step = None # Function @spaces.GPU(enable_queue=True) def generate_image(prompt, option): ckpt, step = opts[option] if last_step != step: pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing", prediction_type="sample" if step == 1 else "epsilon") pipe.unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device=device)) last_step = step image = pipe(prompt, num_inference_steps=step, guidance_scale=0).images[0] return image with gr.Blocks() as demo: gr.HTML("