Spaces:
Runtime error
Runtime error
File size: 8,806 Bytes
58bcf08 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 |
import json
import streamlit as st
from annotated_text import annotated_text
from cherche import compose, qa, rank, retrieve, summary
from sentence_transformers import SentenceTransformer
from sklearn.feature_extraction.text import TfidfVectorizer
from transformers import pipeline
@st.cache(hash_funcs={compose.Pipeline: lambda _: None}, allow_output_mutation=True)
def loading_pipelines():
"""Create three pipelines dedicated to neural research. The first one is dedicated to game
retrieval. The second is dedicated to the question answering task. The third is dedicated to
the summarization task. Save pipelines as pickle file.
>>> search = (
... tfidf(on = "game") + ranker(on = "game") | tfidf(on = ["game", "summary"]) +
... ranker(on = ["game", "summary"]) + documents
... )
"""
# Load documents
with open("games.json", "r") as documents_file:
documents = json.load(documents_file)
# A first retriever dedicated to title
retriever_title = retrieve.TfIdf(
key="id",
on=["game"],
documents=documents,
tfidf=TfidfVectorizer(
lowercase=True,
min_df=1,
max_df=0.9,
ngram_range=(3, 7),
analyzer="char",
),
k=30,
)
# A second retriever dedicated to title and also summary of games.
retriever_title_summary = retrieve.TfIdf(
key="id",
on=["game", "summary"],
documents=documents,
tfidf=TfidfVectorizer(
lowercase=True,
min_df=1,
max_df=0.9,
ngram_range=(3, 7),
analyzer="char",
),
k=30,
)
# Load our encoder to re-rank retrievers documents.
encoder = SentenceTransformer("sentence-transformers/all-mpnet-base-v2").encode
# A ranker dedicated to title
ranker_title = rank.Encoder(
key="id",
on=["game"],
encoder=encoder,
k=5,
path="games_title.pkl",
)
# A ranker dedicated to title and summary
ranker_title_summary = rank.Encoder(
key="id",
on=["game", "summary"],
encoder=encoder,
k=5,
path="games_summary.pkl",
)
# Pipeline creation
search = (
(retriever_title + ranker_title) | (retriever_title_summary + ranker_title_summary)
) + documents
# Index
search.add(documents)
return search
@st.cache(hash_funcs={compose.Pipeline: lambda _: None}, allow_output_mutation=True)
def write_search(query):
return search(query)[:5]
@st.cache(hash_funcs={compose.Pipeline: lambda _: None}, allow_output_mutation=True)
def loading_summarization_pipeline():
summarizer = summary.Summary(
model=pipeline(
"summarization",
model="sshleifer/distilbart-cnn-12-6",
tokenizer="sshleifer/distilbart-cnn-12-6",
framework="pt",
),
on=["game", "summary"],
max_length=50,
)
search_summarize = search + summarizer
return search_summarize
@st.cache(hash_funcs={compose.Pipeline: lambda _: None}, allow_output_mutation=True)
def write_search_summarize(query_summarize):
return search_summarize(query_summarize)
@st.cache(hash_funcs={compose.Pipeline: lambda _: None}, allow_output_mutation=True)
def loading_qa_pipeline():
question_answering = qa.QA(
model=pipeline(
"question-answering",
model="deepset/roberta-base-squad2",
tokenizer="deepset/roberta-base-squad2",
),
k=3,
on="summary",
)
search_qa = search + question_answering
return search_qa
@st.cache(hash_funcs={compose.Pipeline: lambda _: None}, allow_output_mutation=True)
def write_search_qa(query_qa):
return search_qa(query_qa)
if __name__ == "__main__":
st.markdown("# 🕹 Cherche")
st.markdown(
"[Cherche](https://github.com/raphaelsty/cherche) (search in French) allows you to create a \
neural search pipeline using retrievers and pre-trained language models as rankers. Cherche's main strength is its ability to build diverse and end-to-end pipelines."
)
st.image("explain.png")
st.markdown(
"Here is a demo of neural search for video games using a sample of reviews made by [Metacritic](https://www.metacritic.com). \
Starting the app may take a while if the models are not stored in cache."
)
# Will be slow the first time, you will need to compute embeddings.
search = loading_pipelines()
st.markdown("## 👾 Neural search")
st.markdown(
'```search = (tfidf(on = "title") + ranker(on = "title") | tfidf(on = ["title", "summary"]) + ranker(on = ["game", "summary"]) + documents)```'
)
query = st.text_input(
"games",
value="super smash bros",
max_chars=None,
key=None,
type="default",
help=None,
autocomplete=None,
on_change=None,
args=None,
kwargs=None,
)
if query:
for document in write_search(query):
if document["rate"] < 10:
document["rate"] *= 10
st.markdown(f"### {document['game']}")
st.markdown(f"Metacritic Rating: {document['rate']}")
col_1, col_2 = st.columns([1, 5])
with col_1:
st.image(document["image"], width=100)
with col_2:
st.write(f"{document['summary'][:430]}...")
st.markdown("## 🎲 Summarization")
st.markdown(
'```search = (tfidf(on = "title") + ranker(on = "title") | tfidf(on = ["title", "summary"]) + ranker(on = ["game", "summary"]) + documents + summarization(on = "summary"))```'
)
st.markdown(
"Let's create a summay but it may take few seconds. Summarization models are not that fast using CPU. Also it may take time to load the summarization model if it's not in cache yet.."
)
query_summarize = st.text_input(
"summarization",
value="super smash bros",
max_chars=None,
key=None,
type="default",
help=None,
autocomplete=None,
on_change=None,
args=None,
kwargs=None,
)
if query_summarize:
search_summarize = loading_summarization_pipeline()
st.write(f"**{write_search_summarize(query_summarize)}**")
st.markdown("## 🎮 Question answering")
st.markdown(
'```search = (tfidf(on = "title") + ranker(on = "title") | tfidf(on = ["title", "summary"]) + ranker(on = ["game", "summary"]) + documents + question_answering(on = "summary"))```'
)
st.markdown(
"It may take few seconds. Question answering models are not that fast using CPU. Also it may take time to load the question answering model if it's not in cache yet."
)
query_qa = st.text_input(
"question",
value="What is the purpose of playing Super Smash Bros?",
max_chars=None,
key=None,
type="default",
help=None,
autocomplete=None,
on_change=None,
args=None,
kwargs=None,
)
if query_qa:
search_qa = loading_qa_pipeline()
for document_qa in write_search_qa(query_qa):
st.markdown(f"### {document_qa['game']}")
st.markdown(f"Metacritic Rating: {document_qa['rate']}")
col_1, col_2 = st.columns([1, 5])
with col_1:
st.image(document_qa["image"], width=100)
with col_2:
annotations = document_qa["summary"].split(document_qa["answer"])
if document_qa["start"] == 0:
annotated_text(
(
document_qa["answer"],
f"answer {round(document_qa['qa_score'], 2)}",
"#8ef",
),
" ",
" ".join(annotations[1:]),
)
elif document_qa["end"] == len(document_qa["summary"]):
annotated_text(
" ".join(annotations[:-1]),
(
document_qa["answer"],
f"answer {round(document_qa['qa_score'], 2)}",
"#8ef",
),
)
else:
annotated_text(
annotations[0],
(
document_qa["answer"],
f"answer {round(document_qa['qa_score'], 2)}",
"#8ef",
),
annotations[1],
)
|