File size: 3,077 Bytes
8b8b0b2
 
 
bb35b84
 
8b8b0b2
 
 
 
 
 
bb35b84
 
 
 
8b8b0b2
 
bb35b84
 
 
 
 
 
 
 
 
8b8b0b2
 
25721d0
8b8b0b2
 
 
 
 
 
 
 
 
 
 
bb35b84
 
 
 
 
 
 
 
5b4a85e
bb35b84
 
8b8b0b2
bb35b84
 
8b8b0b2
bb35b84
 
8b8b0b2
bb35b84
8b8b0b2
 
 
1300829
 
8d83783
 
bb35b84
1300829
8b8b0b2
bb35b84
25721d0
4695c36
 
bb35b84
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import gradio as gr

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer, pipeline
from threading import Thread

# The huggingface model id for Microsoft's phi-2 model
checkpoint = "microsoft/phi-2"

# Download and load model and tokenizer
tokenizer = AutoTokenizer.from_pretrained(checkpoint, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(checkpoint, torch_dtype=torch.float32, device_map="auto", trust_remote_code=True)

# Streamer
streamer = TextIteratorStreamer(tokenizer=tokenizer, skip_prompt=True)

# Text generation pipeline
phi2 = pipeline(
    "text-generation", 
    tokenizer=tokenizer, 
    model=model, 
    streamer=streamer, 
    pad_token_id=tokenizer.eos_token_id,
    eos_token_id=tokenizer.eos_token_id,
    device_map="auto"
)

# Function that accepts a prompt and generates text using the phi2 pipeline
def generate(prompt, chat_history, max_new_tokens):

  instruction = "You are a helpful assistant to 'User'. You do not respond as 'User' or pretend to be 'User'. You only respond once as 'Assistant'."
  final_prompt = f"Instruction: {instruction}\n"

  for sent, received in chat_history:
    final_prompt += "User: " + sent + "\n"
    final_prompt += "Assistant: " + received + "\n"

  final_prompt += "User: " + prompt + "\n"
  final_prompt += "Output:"

  thread = Thread(target=phi2, kwargs={"text_inputs":final_prompt, "max_new_tokens":max_new_tokens})
  thread.start()

  generated_text = ""
  chat_history.append((prompt, ""))
  for word in streamer:
    generated_text += word
    response = generated_text.strip()

    if "User:" in response:
      response = response.split("User:")[0].strip()

    if "Assistant:" in response:
      response = response.split("Assistant:")[1].strip()

    chat_history.pop()
    chat_history.append((prompt, response))

    yield "", chat_history

# Chat interface with gradio
with gr.Blocks() as demo:
  gr.Markdown("""
  # Phi-2 Chatbot Demo
  This chatbot was created using Microsoft's 2.7 billion parameter [phi-2](https://huggingface.co/microsoft/phi-2) Transformer model. 
  
  In order to reduce the response time on this hardware, `max_new_tokens` has been set to `32` in the text generation pipeline. With this default configuration, it takes approximately `60 seconds` for each response to be generated. Use the slider below to increase or decrease the length of the generated text.
  """)

  tokens_slider = gr.Slider(8, 128, value=32, label="Maximum new tokens", info="A larger `max_new_tokens` parameter value gives you longer text responses but at the cost of a slower response time.")

  chatbot = gr.Chatbot(label="Phi-2 Chatbot")
  msg = gr.Textbox(label="Message", placeholder="Enter text here")
  with gr.Row():
    with gr.Column():
      btn = gr.Button("Submit")
    with gr.Column():
      clear = gr.ClearButton([msg, chatbot])

  btn.click(fn=generate, inputs=[msg, chatbot, tokens_slider], outputs=[msg, chatbot])
  examples = gr.Examples(examples=["Who is Leonhard Euler?"], inputs=[msg])
  
demo.queue().launch()