from llama_cpp import Llama import gradio as gr llm = Llama.from_pretrained( repo_id="rcarioniporras/model_modelcentric_llama_gguf", filename="unsloth.Q4_K_M.gguf", ) def predict(message, history): messages = [{"role": "system", "content": "You are a helpful assistant who answers questions in a concise but thorough way. Prioritize clarity and usefulness in all interactions."}] for user_message, bot_message in history: if user_message: messages.append({"role": "user", "content": user_message}) if bot_message: messages.append({"role": "assistant", "content": bot_message}) messages.append({"role": "user", "content": message}) response = "" for chunk in llm.create_chat_completion( stream=True, messages=messages, ): part = chunk["choices"][0]["delta"].get("content", None) if part: response += part yield response conversation_starters = [ {"text": "What is object-oriented programming (OOP), and what are its four main principles?"}, {"text": "Compare the stack and queue data structures."}, {"text": "Simplify the expression 3(x+4)−2(2x−1)."}, {"text": "What are some fun facts about space?"} ] demo = gr.ChatInterface(fn=predict, theme="Shivi/calm_seafoam") if __name__ == "__main__": demo.launch()