Spaces:
Paused
Paused
File size: 10,792 Bytes
349e866 4b0d1ab 54e5bf6 92fba7d 349e866 54e5bf6 349e866 1baf6db 349e866 b3f6413 349e866 79c0f83 349e866 54e5bf6 1baf6db 79c0f83 54e5bf6 a7ad842 54e5bf6 a7ad842 54e5bf6 349e866 54e5bf6 349e866 eb63650 b1aade6 eb63650 b1aade6 349e866 b1aade6 349e866 4b0d1ab 4f091f6 4b0d1ab eb63650 4b0d1ab 59b3697 349e866 6d0779f 349e866 4b0d1ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
import os
import chainlit as cl
from dotenv import load_dotenv
from operator import itemgetter
from langchain_core.prompts import PromptTemplate
from langchain.schema.output_parser import StrOutputParser
from langchain.schema.runnable import RunnablePassthrough
from langchain.schema.runnable.config import RunnableConfig
from tools import PolygonAPIWrapper, PolygonAggregates, PolygonFinancials, PolygonTickerNews, RAGAgent
from langchain_community.tools.ddg_search import DuckDuckGoSearchRun
from langchain_openai import ChatOpenAI
from langchain_core.utils.function_calling import convert_to_openai_function
from langgraph.prebuilt import ToolExecutor
from langchain.tools import tool
from typing import TypedDict, Annotated
from langgraph.graph.message import add_messages
from langgraph.graph import StateGraph, END
from langchain_core.messages import FunctionMessage, HumanMessage
from langgraph.prebuilt import ToolInvocation
import json
from langchain_core.messages import BaseMessage
import datetime
import yfinance as yf
import pandas as pd
import requests
# GLOBAL SCOPE - ENTIRE APPLICATION HAS ACCESS TO VALUES SET IN THIS SCOPE #
# ---- ENV VARIABLES ---- #
"""
This function will load our environment file (.env) if it is present.
NOTE: Make sure that .env is in your .gitignore file - it is by default, but please ensure it remains there.
"""
load_dotenv()
"""
We will load our environment variables here.
"""
OPENAI_API_KEY = os.environ['OPENAI_API_KEY']
LANGCHAIN_API_KEY = os.environ['LANGCHAIN_API_KEY']
POLYGON_API_KEY = os.environ['POLYGON_API_KEY']
FMP_API_KEY = os.environ['FMP_API_KEY']
#-----DEFINE ADDITIONAL TOOLS AND FUNCTIONS-----#
@tool
def get_datetime() -> str:
"""Get the current date and time in YYYY-MM-DD HH:MM:SS format."""
return str(datetime.datetime.now())
@tool
def get_date() -> str:
"""Get the current date in YYYY-MM-DD format. Also useful when determining the current quarter."""
return str(datetime.datetime.now()).split(" ")[0]
@tool
def get_time() -> str:
"""Get the current time in HH:MM:SS format."""
return str(datetime.datetime.now()).split(" ")[1]
@tool
def get_quarter(date:str) -> str:
"""This tool takes a date in YYYY-MM-DD format as an argument and returns the quarter and year in the format 'QQ YYYY'."""
quarters = {
"01" : "Q1",
"02" : "Q1",
"03" : "Q1",
"04" : "Q2",
"05" : "Q2",
"06" : "Q2",
"07" : "Q3",
"08" : "Q3",
"09" : "Q3",
"10" : "Q4",
"11" : "Q4",
"12" : "Q4",
}
return quarters[date.split("-")[1]] + f" {date.split('-')[0]}"
@tool
def calculate_percent_valuation(intrinsic_value:float, current_stock_price:float) -> float:
"""This tool can be used to calculate how overvalued or undervalued a stock is. It takes the calculated intrinsic value and the current stock price as arguments and returns the valuation percentage, in a format similar to '0.50' for 50%. The
math performed by this function is (intrinsic_value-current_stock_price)/abs(intrinsic_value). The current stock price must be retrieved using the 'get_date' tool (to get the current date) and then using that date to access the 'polygon_aggregates' tool.
A positive percentage indicates an undervalued stock and a negative percentage indicates an overvalued stock."""
return (intrinsic_value-current_stock_price)/abs(intrinsic_value)
@tool
def calculate_intrinsic_value(ticker:str, average_growth_rate):
"""This tool is helpful for calculating the intrinsic value of a stock. It takes the stock ticker, the average growth rate based on revenue (retrieved from financial reports or with the polygon API. This should be capped at plus or minus 300% per year.)"""
wacc = calculate_wacc(ticker)
@tool
def calculate_wacc( #refer to https://www.gurufocus.com/term/wacc/SOFI#:~:text=SoFi%20Technologies%20WACC%20%25%20Calculation,the%20firm's%20cost%20of%20capital.
ticker:str,
market_cap:float,
interest_expense:float,
tax_expense:float,
pre_tax_income:float,
long_term_debt:float
):
"""This tool is used to determine the weighted average cost of capital (WACC) when performing a DCF analysis. It takes the following arguments:
ticker
market capitalization - The market capitalization should be retrieved using the duckduckgo_search tool. Explicitly state 'nvidia market cap today'
interest expense - trailing twelve month interest expense calculated from the response of the polygon_financials tool.
tax expense - trailing twelve month tax expense calculated from the response of the polygon_financials tool.
pre-tax income - trailing twelve month pre-tax income calculated from the response of the polygon_financials tool.
long term debt - long term debt calculated from the response of the polygon_financials tool.
WACC is returned as a percentage in the format '0.057'."""
treasury_yield10 = yf.Ticker("^TNX")
risk_free_rate = round(treasury_yield10.info['regularMarketPreviousClose']/100,2)
sp500_teturn = 0.10
stock = yf.Ticker(f"{ticker}")
beta = stock.info["beta"]
cost_of_equity = round(risk_free_rate + beta*(sp500_teturn - risk_free_rate),2)
weight_of_equity, weight_of_debt = get_weights(market_cap, long_term_debt)
cost_of_debt = get_cost_of_debt(interest_expense, long_term_debt)
tax_rate = get_tax_rate(tax_expense, pre_tax_income)
wacc = round((weight_of_equity * cost_of_equity) + ((weight_of_debt * cost_of_debt ) * (1-tax_rate)),3)
return wacc
@tool
def get_dcf(ticker:str) -> float:
"""This tool takes a single stock ticker as an argument and returns the discounted cash flow valuation, in dollars. This tool is helpful when trying to determine the intrinsic value of a company, or if a company is overvalued or undervalued."""
url = f'https://financialmodelingprep.com/api/v3/discounted-cash-flow/{ticker}?apikey={FMP_API_KEY}'
# Make the request to the API
response = requests.get(url)
# Check if the request was successful
if response.status_code == 200:
# Parse the response JSON
dcf_data = response.json()[0]
# return the DCF data
return dcf_data["dcf"]
else:
# return the error message
return f"Failed to retrieve data: {response.status_code}"
def get_weights(market_cap, long_term_debt):
e = market_cap
d = long_term_debt
weight_of_equity = e/(e+d)
weight_of_debt = d/(e+d)
return weight_of_equity, weight_of_debt
def get_cost_of_debt(interest_expense, long_term_debt) -> float:
return interest_expense/long_term_debt
def get_tax_rate(tax_expense, pre_tax_income):
tax_rate = tax_expense/pre_tax_income
if tax_rate>1:
return 1.00
if tax_rate<0:
return 0.00
return tax_rate
def get_wacc(ticker):
treasury_yield10 = yf.Ticker("^TNX")
risk_free_rate = round(treasury_yield10.info['regularMarketPrice']/100,2)
sp500_teturn = 0.10
stock = yf.Ticker(f"{ticker}")
beta = stock.info["beta"]
cost_of_equity = round(risk_free_rate + beta*(sp500_teturn - risk_free_rate),2)
stock_bal = stock.balance_sheet
#-----CREATE TOOL BELT AND EXECUTOR-----#
api_wrapper = PolygonAPIWrapper(polygon_api_key=POLYGON_API_KEY)
tool_belt = [
get_datetime,
get_date,
get_time,
get_quarter,
calculate_percent_valuation,
get_dcf,
RAGAgent(),
DuckDuckGoSearchRun(),
PolygonAggregates(api_wrapper=api_wrapper),
PolygonFinancials(api_wrapper=api_wrapper),
PolygonTickerNews(api_wrapper=api_wrapper),
]
tool_executor = ToolExecutor(tool_belt)
#-----INSTANTIATE MODEL AND BIND FUNCTIONS-----#
model = ChatOpenAI(model="gpt-4o", temperature=0)
functions = [convert_to_openai_function(t) for t in tool_belt]
model = model.bind_functions(functions)
#-----INSTANTIATE AGENT-----#
class AgentState(TypedDict):
messages: Annotated[list, add_messages]
#-----CREATE NODES-----#
def call_model(state):
messages = state["messages"]
response = model.invoke(messages)
return {"messages" : [response]}
def call_tool(state):
last_message = state["messages"][-1]
action = ToolInvocation(
tool=last_message.additional_kwargs["function_call"]["name"],
tool_input=json.loads(
last_message.additional_kwargs["function_call"]["arguments"]
)
)
response = tool_executor.invoke(action)
function_message = FunctionMessage(content=str(response), name=action.tool)
return {"messages" : [function_message]}
workflow = StateGraph(AgentState)
workflow.add_node("agent", call_model)
workflow.add_node("use tool", call_tool)
workflow.set_entry_point("agent")
def should_continue(state):
last_message = state["messages"][-1]
if "function_call" not in last_message.additional_kwargs:
return "end"
return "continue"
workflow.add_conditional_edges(
"agent",
should_continue,
{
"continue" : "use tool",
"end" : END
}
)
@cl.author_rename
def rename(original_author: str):
"""
This function can be used to rename the 'author' of a message.
In this case, we're overriding the 'Assistant' author to be 'Paul Graham Essay Bot'.
"""
rename_dict = {
"Assistant" : "SimpliFinance"
}
return rename_dict.get(original_author, original_author)
@cl.on_chat_start
async def start_chat():
workflow.add_edge("use tool", "agent")
app = workflow.compile()
cl.user_session.set("agent", app)
@cl.on_message
async def main(message: cl.Message):
"""
This function will be called every time a message is recieved from a session.
We will use the LCEL RAG chain to generate a response to the user query.
The LCEL RAG chain is stored in the user session, and is unique to each user session - this is why we can access it here.
"""
agent = cl.user_session.get("agent")
msg = cl.Message(content="")
if message.elements:
dfs = [read_csv(file.path) for file in message.elements if "csv" in file.mime]
message_to_send = {"messages": HumanMessage(content=message.content + '\nThe following is a pandas dataframe containing information that is relevant to the preceeding message:\n' + dfs[0])}
else:
message_to_send = {"messages": HumanMessage(content=message.content)}
async for chunk in agent.astream(
message_to_send,
config=RunnableConfig(callbacks=[cl.LangchainCallbackHandler()]),
):
for key in chunk:
if key == "agent" and chunk[key].get("messages")[0].content is not None:
await msg.stream_token(chunk[key].get("messages")[0].content)
await msg.send()
def read_csv(csv):
df = pd.read_csv(csv,dtype=str)
return df |