reab5555's picture
Update app.py
f69b877 verified
import spaces
import gradio as gr
import cv2
from PIL import Image, ImageDraw, ImageFont
import torch
from transformers import Owlv2Processor, Owlv2ForObjectDetection
import numpy as np
import os
import matplotlib.pyplot as plt
import tempfile
import shutil
device = "cuda"
processor = Owlv2Processor.from_pretrained("google/owlv2-base-patch16")
model = Owlv2ForObjectDetection.from_pretrained("google/owlv2-base-patch16")
model = model.to(device)
def process_video(video_path, target, progress=gr.Progress()):
if video_path is None:
return None, None, "Error: No video uploaded"
if not os.path.exists(video_path):
return None, None, f"Error: Video file not found at {video_path}"
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
return None, None, f"Error: Unable to open video file at {video_path}"
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
original_fps = int(cap.get(cv2.CAP_PROP_FPS))
output_fps = 1
frame_duration = 1 / output_fps
video_duration = frame_count / original_fps
frame_scores = []
temp_dir = tempfile.mkdtemp()
frame_paths = []
batch_size = 1
batch_frames = []
batch_indices = []
for i, time in enumerate(progress.tqdm(np.arange(0, video_duration, frame_duration))):
frame_number = int(time * original_fps)
cap.set(cv2.CAP_PROP_POS_FRAMES, frame_number)
ret, img = cap.read()
if not ret:
break
# Convert to RGB without resizing
pil_img = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
batch_frames.append(pil_img)
batch_indices.append(i)
if len(batch_frames) == batch_size or i == int(video_duration / frame_duration) - 1:
# Process batch
inputs = processor(text=[target] * len(batch_frames), images=batch_frames, return_tensors="pt", padding=True).to(device)
with torch.no_grad():
outputs = model(**inputs)
target_sizes = torch.Tensor([pil_img.size[::-1] for _ in batch_frames]).to(device)
results = processor.post_process_object_detection(outputs, target_sizes=target_sizes)
for idx, (pil_img, result) in enumerate(zip(batch_frames, results)):
draw = ImageDraw.Draw(pil_img)
max_score = 0
boxes, scores, labels = result["boxes"], result["scores"], result["labels"]
# Inside the loop where bounding boxes are drawn
for box, score, label in zip(boxes, scores, labels):
if score.item() >= 0.5:
box = [round(i, 2) for i in box.tolist()]
object_label = target
confidence = round(score.item(), 3)
annotation = f"{object_label}: {confidence}"
# Increase line width for the bounding box
draw.rectangle(box, outline="red", width=3)
# Calculate font size based on image dimensions
img_width, img_height = pil_img.size
font_size = int(min(img_width, img_height) * 0.03) # 3% of the smaller dimension
try:
font = ImageFont.truetype("arial.ttf", font_size)
except IOError:
font = ImageFont.load_default()
# Calculate text size
text_bbox = draw.textbbox((0, 0), annotation, font=font)
text_width = text_bbox[2] - text_bbox[0]
text_height = text_bbox[3] - text_bbox[1]
# Position text inside the top of the bounding box
text_position = (box[0], box[1])
# Draw semi-transparent background for text
draw.rectangle([text_position[0], text_position[1],
text_position[0] + text_width, text_position[1] + text_height],
fill=(0, 0, 0, 128))
# Draw text in red
draw.text(text_position, annotation, fill="red", font=font)
max_score = max(max_score, confidence)
frame_path = os.path.join(temp_dir, f"frame_{batch_indices[idx]:04d}.png")
pil_img.save(frame_path)
frame_paths.append(frame_path)
frame_scores.append(max_score)
# Clear batch
batch_frames = []
batch_indices = []
# Clear GPU cache every 10 frames
if i % 10 == 0:
torch.cuda.empty_cache()
cap.release()
return frame_paths, frame_scores, None
def create_heatmap(frame_scores, current_frame):
plt.figure(figsize=(16, 4))
plt.imshow([frame_scores], cmap='hot_r', aspect='auto')
plt.title('Object Detection Heatmap', fontsize=14)
plt.xlabel('Frame', fontsize=12)
plt.yticks([])
num_frames = len(frame_scores)
step = max(1, num_frames // 20)
frame_numbers = range(0, num_frames, step)
plt.xticks(frame_numbers, [str(i) for i in frame_numbers], rotation=90, ha='right')
plt.axvline(x=current_frame, color='blue', linestyle='--', linewidth=2)
plt.tight_layout()
with tempfile.NamedTemporaryFile(delete=False, suffix='.png') as tmp_file:
plt.savefig(tmp_file.name, format='png', dpi=400, bbox_inches='tight')
plt.close()
return tmp_file.name
def load_sample_frame(video_path, target_frame=87, original_fps=30, processing_fps=1):
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
return None
# Calculate the corresponding frame number in the original video
original_frame_number = int(target_frame * (original_fps / processing_fps))
# Set the frame position
cap.set(cv2.CAP_PROP_POS_FRAMES, original_frame_number)
ret, frame = cap.read()
cap.release()
if not ret:
return None
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
return frame_rgb
def update_frame_and_heatmap(frame_index, frame_paths, scores):
if frame_paths and 0 <= frame_index < len(frame_paths):
frame = Image.open(frame_paths[frame_index])
heatmap_path = create_heatmap(scores, frame_index)
return np.array(frame), heatmap_path
return None, None
def gradio_app():
with gr.Blocks() as app:
gr.Markdown("# Video Object Detection with Owlv2")
video_input = gr.Video(label="Upload Video")
target_input = gr.Textbox(label="Target Object", value="Elephant")
frame_slider = gr.Slider(minimum=0, maximum=100, step=1, label="Frame", value=0)
heatmap_output = gr.Image(label="Detection Heatmap")
output_image = gr.Image(label="Processed Frame")
error_output = gr.Textbox(label="Error Messages", visible=False)
sample_video_frame = gr.Image(
value=load_sample_frame("Drone Video of African Wildlife Wild Botswan.mp4", target_frame=87),
label="Drone Video of African Wildlife Wild Botswan by wildimagesonline.com - Sample Video Frame (Frame 87 at 1 FPS)"
)
use_sample_button = gr.Button("Use Sample Video")
progress_bar = gr.Progress()
frame_paths = gr.State([])
frame_scores = gr.State([])
def process_and_update(video, target):
paths, scores, error = process_video(video, target, progress_bar)
if paths is not None:
heatmap_path = create_heatmap(scores, 0)
first_frame = Image.open(paths[0])
return paths, scores, np.array(first_frame), heatmap_path, error, gr.Slider(maximum=len(paths) - 1, value=0)
return None, None, None, None, error, gr.Slider(maximum=100, value=0)
video_input.upload(process_and_update,
inputs=[video_input, target_input],
outputs=[frame_paths, frame_scores, output_image, heatmap_output, error_output, frame_slider])
frame_slider.change(update_frame_and_heatmap,
inputs=[frame_slider, frame_paths, frame_scores],
outputs=[output_image, heatmap_output])
def use_sample_video():
sample_video_path = "Drone Video of African Wildlife Wild Botswan.mp4"
return process_and_update(sample_video_path, "Elephant")
use_sample_button.click(use_sample_video,
inputs=None,
outputs=[frame_paths, frame_scores, output_image, heatmap_output, error_output, frame_slider])
# Layout
with gr.Row():
with gr.Column(scale=2):
output_image
with gr.Column(scale=1):
sample_video_frame
use_sample_button
return app
if __name__ == "__main__":
app = gradio_app()
app.launch()
# Cleanup temporary files
def cleanup():
for path in frame_paths.value:
if os.path.exists(path):
os.remove(path)
if os.path.exists(temp_dir):
shutil.rmtree(temp_dir)
# Make sure to call cleanup when the app is closed
# This might require additional setup depending on how you're running the app