import torch import torch.nn as nn import torch.nn.functional as F class UNetBlock(nn.Module): def __init__(self, in_channels, out_channels, down=True, bn=True, dropout=False): super(UNetBlock, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, 4, 2, 1, bias=False) if down \ else nn.ConvTranspose2d(in_channels, out_channels, 4, 2, 1, bias=False) self.bn = nn.BatchNorm2d(out_channels) if bn else None self.dropout = nn.Dropout(0.5) if dropout else None self.down = down def forward(self, x): x = self.conv(x) if self.bn: x = self.bn(x) if self.dropout: x = self.dropout(x) return F.relu(x) if self.down else F.relu(x, inplace=True) class Generator(nn.Module): def __init__(self): super(Generator, self).__init__() self.down1 = UNetBlock(1, 64, bn=False) # Input is L channel (1 channel) self.down2 = UNetBlock(64, 128) self.down3 = UNetBlock(128, 256) self.down4 = UNetBlock(256, 512) self.down5 = UNetBlock(512, 512) self.down6 = UNetBlock(512, 512) self.down7 = UNetBlock(512, 512) self.down8 = UNetBlock(512, 512, bn=False) self.up1 = UNetBlock(512, 512, down=False, dropout=True) self.up2 = UNetBlock(1024, 512, down=False, dropout=True) self.up3 = UNetBlock(1024, 512, down=False, dropout=True) self.up4 = UNetBlock(1024, 512, down=False) self.up5 = UNetBlock(1024, 256, down=False) self.up6 = UNetBlock(512, 128, down=False) self.up7 = UNetBlock(256, 64, down=False) self.up8 = nn.ConvTranspose2d(128, 2, 4, 2, 1) # Output is AB channels (2 channels) def forward(self, x): d1 = self.down1(x) d2 = self.down2(d1) d3 = self.down3(d2) d4 = self.down4(d3) d5 = self.down5(d4) d6 = self.down6(d5) d7 = self.down7(d6) d8 = self.down8(d7) u1 = self.up1(d8) u2 = self.up2(torch.cat([u1, d7], 1)) u3 = self.up3(torch.cat([u2, d6], 1)) u4 = self.up4(torch.cat([u3, d5], 1)) u5 = self.up5(torch.cat([u4, d4], 1)) u6 = self.up6(torch.cat([u5, d3], 1)) u7 = self.up7(torch.cat([u6, d2], 1)) return torch.tanh(self.up8(torch.cat([u7, d1], 1))) class Discriminator(nn.Module): def __init__(self): super(Discriminator, self).__init__() self.model = nn.Sequential( nn.Conv2d(3, 64, 4, stride=2, padding=1), # Input is L+AB (3 channels) nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(64, 128, 4, stride=2, padding=1), nn.BatchNorm2d(128), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(128, 256, 4, stride=2, padding=1), nn.BatchNorm2d(256), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(256, 512, 4, padding=1), nn.BatchNorm2d(512), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(512, 1, 4, padding=1) ) def forward(self, x): return self.model(x) def init_weights(model): classname = model.__class__.__name__ if classname.find('Conv') != -1: nn.init.normal_(model.weight.data, 0.0, 0.02) elif classname.find('BatchNorm') != -1: nn.init.normal_(model.weight.data, 1.0, 0.02) nn.init.constant_(model.bias.data, 0) def create_models(): try: print("Creating Generator...") generator = Generator() generator.apply(init_weights) print("Generator created successfully.") print("Creating Discriminator...") discriminator = Discriminator() discriminator.apply(init_weights) print("Discriminator created successfully.") return generator, discriminator except Exception as e: print(f"Error in creating models: {str(e)}") return None, None def test_models(): print("Testing models...") try: generator, discriminator = create_models() if generator is None or discriminator is None: raise Exception("Model creation failed") test_input_g = torch.randn(1, 1, 256, 256) test_output_g = generator(test_input_g) if test_output_g.shape != torch.Size([1, 2, 256, 256]): raise Exception(f"Unexpected generator output shape: {test_output_g.shape}") test_input_d = torch.randn(1, 3, 256, 256) test_output_d = discriminator(test_input_d) if test_output_d.shape != torch.Size([1, 1, 30, 30]): raise Exception(f"Unexpected discriminator output shape: {test_output_d.shape}") print("Model test passed.") return True except Exception as e: print(f"Model test failed: {str(e)}") return False if __name__ == "__main__": try: print("Initializing models...") generator, discriminator = create_models() if generator is None or discriminator is None: raise Exception("Failed to create models") if not test_models(): raise Exception("Model testing failed") print("Model creation and testing completed successfully.") except Exception as e: print(f"Critical error in main execution: {str(e)}")