File size: 4,407 Bytes
4862b9f 9defb57 5f87533 7f51a5a 4862b9f 9defb57 4862b9f 5949a92 4862b9f 5949a92 4862b9f 5949a92 4862b9f 5949a92 44131c9 4862b9f 44131c9 9861a8a 4862b9f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 |
import os
import time
import streamlit as st
from htmlTemplates import css, bot_template, user_template
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import Chroma
from langchain.memory import ConversationBufferMemory
from langchain.chains import RetrievalQA
from pdfminer.high_level import extract_text
from langchain.text_splitter import RecursiveCharacterTextSplitter
from transformers import AutoTokenizer, AutoModelForCausalLM
# Updated Prompt Template
tokenizer = AutoTokenizer.from_pretrained("TinyPixel/Llama-2-7B-bf16-sharded")
model = AutoModelForCausalLM.from_pretrained("TinyPixel/Llama-2-7B-bf16-sharded")
persist_directory = 'db'
embeddings_model_name = 'sentence-transformers/all-MiniLM-L6-v2'
def get_pdf_text(pdf_path):
return extract_text(pdf_path)
def get_pdf_text_chunks(pdf_text):
text_splitter = RecursiveCharacterTextSplitter()
return text_splitter.split_text(text=pdf_text, max_chunk_length=1000, min_chunk_length=100, overlap_length=100)
def create_vector_store(target_source_chunks):
embeddings = HuggingFaceEmbeddings(model_name=embeddings_model_name)
db = Chroma(persist_directory=persist_directory, embedding_function=embeddings)
db.add(target_source_chunks)
return db
def get_vector_store(target_source_chunks):
embeddings = HuggingFaceEmbeddings(model_name=embeddings_model_name)
db = Chroma(persist_directory=persist_directory, embedding_function=embeddings)
retriver = db.as_retriever(search_kwargs={"k": target_source_chunks})
return retriver
def get_conversation_chain(retriever):
memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True,)
chain = RetrievalQA.from_llm(
llm=model,
memory=memory,
retriever=retriever,
)
return chain
def handle_userinput(user_question):
if st.session_state.conversation is None:
st.warning("Please load the Vectorstore first!")
return
else:
with st.spinner('Thinking...', ):
start_time = time.time()
response = st.session_state.conversation({'query': user_question})
end_time = time.time()
st.session_state.chat_history = response['chat_history']
for i, message in enumerate(st.session_state.chat_history):
if i % 2 == 0:
st.write(user_template.replace("{{MSG}}", message.content), unsafe_allow_html=True)
else:
st.write(bot_template.replace("{{MSG}}", message.content), unsafe_allow_html=True)
st.write('Elapsed time: {:.2f} seconds'.format(end_time - start_time))
st.balloons()
def main():
st.set_page_config(page_title='Chat with PDF', page_icon=':rocket:', layout='wide', )
with st.sidebar.title(':gear: Parameters'):
model_n_ctx = st.sidebar.slider('Model N_CTX', min_value=128, max_value=2048, value=1024, step=2)
model_n_batch = st.sidebar.slider('Model N_BATCH', min_value=1, max_value=model_n_ctx, value=512, step=2)
target_source_chunks = st.sidebar.slider('Target Source Chunks', min_value=1, max_value=10, value=4, step=1)
st.write(css, unsafe_allow_html=True)
if "conversation" not in st.session_state:
st.session_state.conversation = None
if "chat_history" not in st.session_state:
st.session_state.chat_history = None
st.header('Chat with PDF :robot_face:')
st.subheader('Upload your PDF file and start chatting with it!')
user_question = st.text_input('Enter your message here:')
if st.button('Start Chain'):
with st.spinner('Working in progress ...'):
pdf_file = st.file_uploader("Upload PDF", type=['pdf'])
if pdf_file is not None:
pdf_text = get_pdf_text(pdf_file)
pdf_text_chunks = get_pdf_text_chunks(pdf_text)
st.session_state.vector_store = create_vector_store(pdf_text_chunks)
st.session_state.conversation = get_conversation_chain(
retriever=st.session_state.vector_store,
)
st.success('Vectorstore created successfully! You can start chatting now!')
else:
st.warning('Please upload a PDF file first!')
if user_question:
handle_userinput(user_question)
if __name__ == '__main__':
main()
|