embeddings
Browse files
app.py
CHANGED
@@ -1,110 +1,7 @@
|
|
1 |
-
import
|
2 |
-
import time
|
3 |
-
import streamlit as st
|
4 |
-
from htmlTemplates import css, bot_template, user_template
|
5 |
from langchain.embeddings import HuggingFaceEmbeddings
|
6 |
-
from langchain.vectorstores import
|
7 |
-
from langchain.memory import ConversationBufferMemory
|
8 |
-
from langchain.chains import RetrievalQA
|
9 |
-
from pdfminer.high_level import extract_text
|
10 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
11 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
12 |
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
embeddings_model_name = 'sentence-transformers/all-MiniLM-L6-v2'
|
17 |
-
|
18 |
-
def get_pdf_text(pdf_path):
|
19 |
-
return extract_text(pdf_path)
|
20 |
-
|
21 |
-
def get_pdf_text_chunks(pdf_text):
|
22 |
-
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=150)
|
23 |
-
return text_splitter.split_text(text=pdf_text)
|
24 |
-
|
25 |
-
def create_vector_store(target_source_chunks):
|
26 |
-
embeddings = HuggingFaceEmbeddings(model_name=embeddings_model_name)
|
27 |
-
db = Chroma.from_texts(texts=target_source_chunks, persist_directory=persist_directory, embedding=embeddings)
|
28 |
-
db.persist()
|
29 |
-
return db
|
30 |
-
|
31 |
-
def get_vector_store(target_source_chunks):
|
32 |
-
embeddings = HuggingFaceEmbeddings(model_name=embeddings_model_name)
|
33 |
-
db = Chroma(persist_directory=persist_directory, embedding_function=embeddings)
|
34 |
-
retriver = db.as_retriever(search_kwargs={"k": target_source_chunks})
|
35 |
-
return retriver
|
36 |
-
|
37 |
-
def get_conversation_chain(retriever):
|
38 |
-
tokenizer = AutoTokenizer.from_pretrained("TinyPixel/Llama-2-7B-bf16-sharded")
|
39 |
-
model = AutoModelForCausalLM.from_pretrained("TinyPixel/Llama-2-7B-bf16-sharded")
|
40 |
-
memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True,)
|
41 |
-
chain = RetrievalQA.from_llm(
|
42 |
-
llm=model,
|
43 |
-
memory=memory,
|
44 |
-
retriever=retriever,
|
45 |
-
)
|
46 |
-
return chain
|
47 |
-
|
48 |
-
|
49 |
-
def handle_userinput(user_question):
|
50 |
-
if st.session_state.conversation is None:
|
51 |
-
st.warning("Please load the Vectorstore first!")
|
52 |
-
return
|
53 |
-
else:
|
54 |
-
with st.spinner('Thinking...', ):
|
55 |
-
start_time = time.time()
|
56 |
-
response = st.session_state.conversation({'query': user_question})
|
57 |
-
end_time = time.time()
|
58 |
-
|
59 |
-
st.session_state.chat_history = response['chat_history']
|
60 |
-
|
61 |
-
for i, message in enumerate(st.session_state.chat_history):
|
62 |
-
if i % 2 == 0:
|
63 |
-
st.write(user_template.replace("{{MSG}}", message.content), unsafe_allow_html=True)
|
64 |
-
else:
|
65 |
-
st.write(bot_template.replace("{{MSG}}", message.content), unsafe_allow_html=True)
|
66 |
-
|
67 |
-
st.write('Elapsed time: {:.2f} seconds'.format(end_time - start_time))
|
68 |
-
st.balloons()
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
def main():
|
74 |
-
|
75 |
-
st.set_page_config(page_title='Java Copilot :coffee:', page_icon=':rocket:', layout='wide', )
|
76 |
-
with st.sidebar.title(':gear: Parameters'):
|
77 |
-
model_n_ctx = st.sidebar.slider('Model N_CTX', min_value=128, max_value=2048, value=1024, step=2)
|
78 |
-
model_n_batch = st.sidebar.slider('Model N_BATCH', min_value=1, max_value=model_n_ctx, value=512, step=2)
|
79 |
-
target_source_chunks = st.sidebar.slider('Target Source Chunks', min_value=1, max_value=10, value=4, step=1)
|
80 |
-
st.write(css, unsafe_allow_html=True)
|
81 |
-
|
82 |
-
if "conversation" not in st.session_state:
|
83 |
-
st.session_state.conversation = None
|
84 |
-
if "chat_history" not in st.session_state:
|
85 |
-
st.session_state.chat_history = None
|
86 |
-
|
87 |
-
st.header('Java Copilot :coffee:')
|
88 |
-
st.subheader('Upload your PDF file and start chatting with it!')
|
89 |
-
user_question = st.text_input('Enter your message here:')
|
90 |
-
pdf_file = st.file_uploader("Upload PDF", type=['pdf'])
|
91 |
-
if st.button('Start Chain'):
|
92 |
-
if pdf_file is not None:
|
93 |
-
with st.spinner('Working in progress ...'):
|
94 |
-
pdf_text = get_pdf_text(pdf_file)
|
95 |
-
pdf_text_chunks = get_pdf_text_chunks(pdf_text)
|
96 |
-
st.session_state.vector_store = create_vector_store(pdf_text_chunks)
|
97 |
-
st.session_state.conversation = get_conversation_chain(
|
98 |
-
retriever=st.session_state.vector_store,
|
99 |
-
)
|
100 |
-
st.success('Vectorstore created successfully! You can start chatting now!')
|
101 |
-
else:
|
102 |
-
st.warning('Please upload a PDF file first!')
|
103 |
-
|
104 |
-
|
105 |
-
if user_question:
|
106 |
-
handle_userinput(user_question)
|
107 |
-
|
108 |
-
|
109 |
-
if __name__ == '__main__':
|
110 |
-
main()
|
|
|
1 |
+
import Streamlit as st
|
|
|
|
|
|
|
2 |
from langchain.embeddings import HuggingFaceEmbeddings
|
3 |
+
from langchain.vectorstores import FAISS
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
+
st.title("Embedding Creation for Langchain")
|
6 |
+
st.header("This is a header")
|
7 |
+
files = st.file_uploader("Upload your files", accept_multiple_files=True, type="pdf")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|