import streamlit as st
import base64
import os.path
import os
import cv2
import random
os.system("ls")
col1, col2 = st.columns(2)
title = "Melhoria de imagens"
st.title(title)
os.system("ls")
description = "Sistema para automação。"
st.header(description)
article = "
clone from akhaliq@huggingface with little change | GFPGAN Github Repo
"
uploaded_file = st.file_uploader("Choose a file")
if uploaded_file is not None:
# To read file as bytes:
bytes_data = uploaded_file.getvalue()
st.video(bytes_data)
os.system("rm -R /tmp/*")
os.system("mkdir /tmp/_input")
os.system("mkdir /tmp/_output")
os.system("mkdir /tmp/_outputf")
os.system("mkdir /tmp/videoSaida")
with open("/tmp/inputvideo", "wb") as binary_file:
binary_file.write(bytes_data)
vcap = cv2.VideoCapture('/tmp/inputvideo') # 0=camera
width=0
height=0
if vcap.isOpened():
# get vcap property
width = vcap.get(3) # float `width`
height = vcap.get(4) # float `height`
st.write(str(width)+"x"+str(height))
fps = vcap.get(5)
st.write(str(fps)+" fps")
@st.experimental_memo(suppress_st_warning=True)
def chamada():
percent_complete=0
my_bar = st.progress(0)
percent_complete= percent_complete+ 10
with col1:
my_bar.progress(percent_complete )
#exec=True
# st.write("ffmpeg separando imagens")
#if not os.path.isfile("./_input/imagem-0001.png"):
vcap = cv2.VideoCapture('/tmp/inputvideo') # 0=camera
width=0
height=0
if vcap.isOpened():
# get vcap property
width = vcap.get(3) # float `width`
height = vcap.get(4) # float `height`
fps = vcap.get(5)
# os.system("ffmpeg -i /tmp/inputvideo -vn -acodec copy /tmp/inputvideo.acc")
os.system("ffmpeg -i /tmp/inputvideo -compression_level 10 -pred mixed -pix_fmt rgb24 -sws_flags +accurate_rnd+full_chroma_int -s "+str(int(width/2))+"x"+str(int(height/2))+" -r 29.97 /tmp/_input/imagem-%4d.png")
percent_complete= percent_complete+ 30
with col1:
my_bar.progress(percent_complete )
# st.write("testando imagem")
input_img = cv2.imread("/tmp/_input/imagem-0002.png" , cv2.IMREAD_COLOR)
input_img= cv2.cvtColor(input_img,cv2.COLOR_BGR2RGB)
with col1:
st.image(input_img)
os.system("ls /tmp/_input")
if 'myVar' not in globals():
myVar=""
# st.write("melhorando faces")
with col2:
with st.spinner('Wait for it...'):
# os.system("pip install git+https://github.com/TencentARC/GFPGAN.git")
os.system("python3 inference_gfpgan.py -i /tmp/_input -o /tmp/_output -v 1.4 -s 2")
with col1:
percent_complete= percent_complete+ 30
my_bar.progress(percent_complete )
os.system("ls /tmp/_output")
os.system("echo ----")
os.system("ls /tmp/_output/cmp")
os.system("echo ----")
os.system("ls /tmp/_output/restored_imgs")
os.system("echo ----")
# s 1480x2560
# with col1:
# st.write("recompilando video")
#ffmpeg -r 60 -f image2 -s 1920x1080 -i _output/restored_imgs/imagem-%4d.png -pix_fmt yuv420p ./videoSaida/output.mp4
os.system("ffmpeg -y -r 29.97 -f image2 -i /tmp/_output/restored_imgs/imagem-%4d.png -pix_fmt yuv420p /tmp/videoSaida/output.mp4")
# os.system("ffmpeg -i /tmp/videoSaida/outputp1.mp4 -i /tmp/inputvideo.acc -c:v copy -c:a aac /tmp/output.mp4")
os.system("ls /tmp/videoSaida")
#st.video("./videoSaida/output.mp4" )
with col1:
# st.write("preparando para download do video")
percent_complete= percent_complete+ 30
my_bar.progress(percent_complete )
with col2:
with open("/tmp/videoSaida/output.mp4", "rb") as file:
st.video(file)
btn = st.download_button(
label="Download video",
data=file,
file_name="output.mp4",
mime="video/mp4"
)
#st.download_button("download video", data, file_name='output.mp4', mime='video/mp4',)
#stremio
#input_img = cv2.imread("./_output/cmp/imagem-0001_0000.png" , cv2.IMREAD_COLOR)
#input_img = cv2.imread("./_output/cmp/imagem-0001_0000.png" , cv2.IMREAD_COLOR)
with col2:
# st.write("demonstrando imagem restaurada")
input_img = cv2.imread("/tmp/_output/restored_imgs/imagem-0002.png" , cv2.IMREAD_COLOR)
input_img= cv2.cvtColor(input_img,cv2.COLOR_BGR2RGB)
st.image(input_img)
exec=False
#return Image.fromarray(restored_faces[0][:,:,::-1])
load = st.checkbox("load")
if load:
chamada()
#st.button('Imagem',on_click=inference)
exec=True