import os os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID" os.environ["CUDA_VISIBLE_DEVICES"]="0" try: os.system("pip install --upgrade torch==1.11.0+cu113 torchvision==0.12.0+cu113 -f https://download.pytorch.org/whl/cu113/torch_stable.html") except Exception as e: print(e) from pydoc import describe from huggingface_hub import hf_hub_download import gradio as gr import os from datetime import datetime from PIL import Image import torch import torchvision from diffusers import StableDiffusionImg2ImgPipeline import skimage import paddlehub import numpy as np from lib.options import BaseOptions from apps.crop_img import process_img from apps.eval import Evaluator from types import SimpleNamespace import trimesh import glob device = "cuda" if torch.cuda.is_available() else "cpu" pipe = StableDiffusionImg2ImgPipeline.from_pretrained("stabilityai/stable-diffusion-2-1", torch_dtype=torch.float16, revision="fp16", safety_checker=None) if torch.cuda.is_available() else StableDiffusionImg2ImgPipeline.from_pretrained("stabilityai/stable-diffusion-2-1", safety_checker=None) pipe = pipe.to(device) print( "torch: ", torch.__version__, "\ntorchvision: ", torchvision.__version__, "\nskimage:", skimage.__version__ ) print("EnV", os.environ) net_C = hf_hub_download("radames/PIFu-upright-standing", filename="net_C") net_G = hf_hub_download("radames/PIFu-upright-standing", filename="net_G") opt = BaseOptions() opts = opt.parse_to_dict() opts['batch_size'] = 1 opts['mlp_dim'] = [257, 1024, 512, 256, 128, 1] opts['mlp_dim_color'] = [513, 1024, 512, 256, 128, 3] opts['num_stack'] = 4 opts['num_hourglass'] = 2 opts['resolution'] = 128 opts['hg_down'] = 'ave_pool' opts['norm'] = 'group' opts['norm_color'] = 'group' opts['load_netG_checkpoint_path'] = net_G opts['load_netC_checkpoint_path'] = net_C opts['results_path'] = "./results" opts['name'] = "spaces_demo" opts = SimpleNamespace(**opts) print("Params", opts) evaluator = Evaluator(opts) bg_remover_model = paddlehub.Module(name="U2Net") def resize(value,img): img = Image.open(img) img = img.resize((value,value)) return img def infer(source_img, prompt, negative_prompt, guide, steps, seed, Strength): generator = torch.Generator(device).manual_seed(seed) source_image = resize(768, source_img) source_image.save('source.png') image = pipe(prompt, negative_prompt=negative_prompt, image=source_image, strength=Strength, guidance_scale=guide, num_inference_steps=steps).images[0] return image def process(img_path): base = os.path.basename(img_path) img_name = os.path.splitext(base)[0] print("\n\n\nStarting Process", datetime.now()) print("image name", img_name) img_raw = Image.open(img_path).convert('RGB') img = img_raw.resize( (512, int(512 * img_raw.size[1] / img_raw.size[0])), Image.Resampling.LANCZOS) try: # remove background print("Removing Background") masks = bg_remover_model.Segmentation( images=[np.array(img)], paths=None, batch_size=1, input_size=320, output_dir='./PIFu/inputs', visualization=False) mask = masks[0]["mask"] front = masks[0]["front"] except Exception as e: print(e) print("Aliging mask with input training image") print("Not aligned", front.shape, mask.shape) img_new, msk_new = process_img(front, mask) print("Aligned", img_new.shape, msk_new.shape) try: time = datetime.now() data = evaluator.load_image_from_memory(img_new, msk_new, img_name) print("Evaluating via PIFu", time) evaluator.eval(data, True) print("Success Evaluating via PIFu", datetime.now() - time) result_path = f'./{opts.results_path}/{opts.name}/result_{img_name}' except Exception as e: print("Error evaluating via PIFu", e) try: mesh = trimesh.load(result_path + '.obj') # flip mesh mesh.apply_transform([[-1, 0, 0, 0], [0, 1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1]]) mesh.export(file_obj=result_path + '.glb') result_gltf = result_path + '.glb' return [result_gltf, result_gltf] except Exception as e: print("error generating MESH", e) examples = sorted(glob.glob('examples/*.png')) iface1 = gr.Interface(fn=infer, inputs=[gr.Image(source="upload", type="filepath", label="Raw Image. Must Be .png"), gr.Textbox(label = 'Prompt Input Text. 77 Token (Keyword or Symbol) Maximum'), gr.Textbox(label='What you Do Not want the AI to generate.'), gr.Slider(2, 15, value = 7, label = 'Guidance Scale'), gr.Slider(1, 25, value = 10, step = 1, label = 'Number of Iterations'), gr.Slider(label = "Seed", minimum = 0, maximum = 987654321987654321, step = 1, randomize = True), gr.Slider(label='Strength', minimum = 0, maximum = 1, step = .05, value = .5)], outputs='image') iface2 = gr.Interface( fn=process, inputs=gr.Image(type="filepath", label="Input Image"), outputs=[ gr.Model3D( clear_color=[0.0, 0.0, 0.0, 0.0], label="3D Model"), gr.File(label="Download 3D Model") ], examples=examples, allow_flagging="never", cache_examples=True ) demo = gr.TabbedInterface([iface1, iface2], ["Image-Edit-with-Text", "Image-to-3D-Model"]) if __name__ == "__main__": demo.launch() # if __name__ == "__main__": # iface1.launch(debug=True, enable_queue=False) # iface2.launch(debug=True, enable_queue=False)