from torch import nn import torchvision import torch def create_model(num_classes:int=3): weights = torchvision.models.EfficientNet_B2_Weights.IMAGENET1K_V1 model=torchvision.models.efficientnet_b2(weights=weights) transform=weights.transforms() for param in model.parameters(): param.requires_grad=False model.classifier=nn.Sequential(nn.Dropout(p=0.3, inplace=True), nn.Linear(in_features=1408, out_features=num_classes, bias=True)) return model,transform