Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,14 +1,29 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
# Load the model from Hugging Face
|
3 |
-
model = gr.load("models/rhshah/MediumGEN_LLama2")
|
4 |
-
import time
|
5 |
-
# Define the function to use the model
|
6 |
-
def predict(input):
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
# Create the Gradio interface
|
11 |
-
iface = gr.Interface(fn=predict, inputs="text", outputs="text")
|
12 |
-
|
13 |
-
# Launch the interface
|
14 |
-
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# import gradio as gr
|
2 |
+
# # Load the model from Hugging Face
|
3 |
+
# model = gr.load("models/rhshah/MediumGEN_LLama2")
|
4 |
+
# import time
|
5 |
+
# # Define the function to use the model
|
6 |
+
# def predict(input):
|
7 |
+
# time.sleep(10)
|
8 |
+
# return "model(input)"
|
9 |
+
|
10 |
+
# # Create the Gradio interface
|
11 |
+
# iface = gr.Interface(fn=predict, inputs="text", outputs="text")
|
12 |
+
|
13 |
+
# # Launch the interface
|
14 |
+
# iface.launch()
|
15 |
+
|
16 |
+
from peft import AutoPeftModelForCausalLM
|
17 |
+
from transformers import AutoTokenizer
|
18 |
+
import torch
|
19 |
+
peft_model_dir = "models/rhshah/MediumGEN_LLama2"
|
20 |
+
|
21 |
+
|
22 |
+
# load base LLM model and tokenizer
|
23 |
+
trained_model = AutoPeftModelForCausalLM.from_pretrained(
|
24 |
+
peft_model_dir,
|
25 |
+
low_cpu_mem_usage=True,
|
26 |
+
# torch_dtype=torch.float16,
|
27 |
+
# load_in_4bit=True,
|
28 |
+
)
|
29 |
+
tokenizer = AutoTokenizer.from_pretrained(peft_model_dir)
|