riabayonaor commited on
Commit
f76f709
1 Parent(s): 080fa4c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -63
app.py CHANGED
@@ -1,68 +1,15 @@
1
  #10
2
- import gradio as gr
3
- from huggingface_hub import InferenceClient
4
- import os
5
 
6
- # Suponiendo que 'token' es tu token de autenticación de Hugging Face
7
- token = os.getenv("Mitoken")
8
- if not token:
9
- raise ValueError("Token de Hugging Face no encontrado.")
10
 
11
- # Crear un único cliente de inferencia con el token de autenticación
12
- client = InferenceClient(token=token)
13
 
14
- # Lista de modelos
15
- models = [
16
- "google/gemma-7b",
17
- "google/gemma-7b-it",
18
- "google/gemma-2b",
19
- "google/gemma-2b-it"
20
- ]
21
 
22
- def chat_inf(prompt, history, memory, client_choice, seed, temp, tokens, top_p, rep_p, chat_mem, cust_p):
23
- model = models[int(client_choice)] # Obtener el ID del modelo basado en la elección del usuario
24
- try:
25
- parameters = {
26
- "temperature": temp,
27
- "max_new_tokens": tokens,
28
- "top_p": top_p,
29
- "repetition_penalty": rep_p,
30
- "seed": seed,
31
- }
32
- formatted_prompt = f"{prompt}"
33
- # Realiza la solicitud de inferencia especificando el model_id directamente aquí
34
- response = client(inputs=formatted_prompt, parameters=parameters, model_id=model, wait_for_model=True)
35
-
36
- output = response[0]["generated_text"] if response else "No response."
37
- new_history = history + [(prompt, output)]
38
- return new_history, memory
39
- except Exception as e:
40
- error_message = f"An error occurred: {str(e)}"
41
- new_history = history + [(prompt, error_message)]
42
- return new_history, memory
43
-
44
- with gr.Blocks() as app:
45
- history = gr.State(default=[])
46
- memory = gr.State(default=[])
47
-
48
- with gr.Row():
49
- inp = gr.Textbox(label="Prompt")
50
- client_choice = gr.Dropdown(label="Choose Model", choices={name: i for i, name in enumerate(models)}, value=0)
51
- temp = gr.Slider(label="Temperature", minimum=0.1, maximum=1.0, value=0.7)
52
- tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=512, value=100)
53
- top_p = gr.Slider(label="Top-P", minimum=0.1, maximum=1.0, value=0.9)
54
- rep_p = gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, value=1.1)
55
- seed = gr.Number(label="Seed", value=42)
56
- chat_mem = gr.Slider(label="Chat Memory", minimum=1, maximum=10, value=3)
57
- cust_p = gr.Textbox(label="Custom Prompt", value="<start_of_turn>user{prompt}<end_of_turn><start_of_turn>model", visible=False)
58
- generate_button = gr.Button("Generate")
59
-
60
- chat = gr.Chatbot()
61
-
62
- generate_button.click(
63
- fn=chat_inf,
64
- inputs=[inp, history, memory, client_choice, seed, temp, tokens, top_p, rep_p, chat_mem, cust_p],
65
- outputs=[chat, memory]
66
- )
67
-
68
- app.launch()
 
1
  #10
2
+ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
 
 
3
 
4
+ # Cargar el tokenizer y el modelo
5
+ tokenizer = AutoTokenizer.from_pretrained("PlanTL-GOB-ES/roberta-base-bne")
6
+ model = AutoModelForSeq2SeqLM.from_pretrained("PlanTL-GOB-ES/roberta-base-bne")
 
7
 
8
+ # Inicializar la pipeline de generación de texto
9
+ text_generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
10
 
11
+ # Generar una respuesta a una pregunta en español
12
+ question = "¿Cuál es la capital de España?" # Ejemplo de pregunta
13
+ response = text_generator(question, max_length=50, do_sample=True)
 
 
 
 
14
 
15
+ print(response[0]['generated_text'])