has12zen
fix
b12bbc3
import matplotlib.pyplot as plt
from PIL import ImageFont
from PIL import ImageDraw
import multiprocessing
from PIL import Image
import numpy as np
import itertools
# import logging
import math
import cv2
import os
# logging.basicConfig(filename=f'{os.getcwd()}/frame_processing.log', level=logging.INFO)
# logging.info('Starting frame processing')
fps = 0
def read_file(name):
global fps
cap = cv2.VideoCapture(name)
fps = cap.get(cv2.CAP_PROP_FPS)
if not cap.isOpened():
# logging.error("Cannot open Video")
exit()
frames = []
while True:
ret,frame = cap.read()
if not ret:
# logging.info("Can't receive frame (stream end?). Exiting ...")
break
frames.append(frame)
cap.release()
cv2.destroyAllWindows()
for i in range(len(frames)):
# print(frames[i].shape)
frames[i]=cv2.cvtColor(frames[i], cv2.COLOR_BGR2GRAY)
frames_with_index = [(frame, i) for i, frame in enumerate(frames)]
return frames_with_index
st = [0,1,2,3,4]
dt = {}
idx = 0;
l = (tuple(i) for i in itertools.product(st, repeat=4) if tuple(reversed(i)) >= tuple(i))
l=list(l)
cnt = 0
for i in range(0,len(l)):
lt=l[i]
mirror = tuple(reversed(lt))
dt[mirror]=i;
dt[lt]=i;
def calc_filtered_img(img):
# residual_img= np.zeros(img.shape)
# residual_img = np.array(img);
fil = np.array([[-1,3,-3,1]])
residual_img = cv2.filter2D(img, -1, fil)
# for i in range(img.shape[0]):
# for j in range(img.shape[1]):
# residual_img[i, j] = - 3*img[i, j];
# if(j>0):
# residual_img[i, j] += img[i, j-1]
# if(j+1<img.shape[1]):
# residual_img[i, j] += 3*img[i, j+1]
# if(j+2<img.shape[1]):
# residual_img[i,j]-= img[i, j+2]
# residual_img = np.convolve(img,[1,-3,3,-1],mode='same')
return residual_img
def calc_q_t_img(img, q, t):
# qt_img = np.zeros(img.shape)
# for i in range(img.shape[0]):
# for j in range(img.shape[1]):
# val = np.minimum(t, np.maximum(-t, np.round(img[i, j]/q)))
# qt_img[i, j] = val
# print(dct)
qt_img = np.minimum(t, np.maximum(-t, np.round(img/q)))
return qt_img
def process_frame(frame_and_index):
frame, index = frame_and_index
# processing logic for a single frame
# logging.info(f"Processing frame {index}")
filtered_image = calc_filtered_img(frame)
output_image = calc_q_t_img(filtered_image, q, t)
output_image=output_image+2
# plt.imshow(output_image)
return output_image.astype(np.uint8)
# Center the filtered image at zero by adding 128
q = 3
t = 2
def process_video(frames_with_index):
num_processes = multiprocessing.cpu_count()
# logging.info(f"Using {num_processes} processes")
pool = multiprocessing.Pool(num_processes)
# process the frames in parallel
processed_frames = pool.map(process_frame, frames_with_index)
pool.close()
pool.join()
processed_frame_with_index = [(frame, i) for i, frame in enumerate(processed_frames)]
return processed_frame_with_index
co_occurrence_matrix_size = 5
co_occurrence_matrix_distance = 4
def each_frame(frame_and_index,processed_frames):
# go rowise and column wise
frame,index = frame_and_index
freq_dict = {}
for i in range( frame.shape[0]):
for j in range( frame.shape[1]-co_occurrence_matrix_distance):
row = frame[i]
v1 = row[j:j+4]
k1 = tuple(v1)
freq_dict[k1]=freq_dict.get(k1,0)+1
freq_dict2={}
for i in range( frame.shape[0]-co_occurrence_matrix_distance):
for j in range( frame.shape[1]):
column = frame[:, j]
v2 = column[i:i+4]
k2 = tuple(v2)
freq_dict2[k2]=freq_dict2.get(k2,0)+1
freq_dict3={}
for i in range( frame.shape[0]):
for j in range( frame.shape[1]):
# get next possible 4 frames
if index < len(processed_frames)-3:
f1 = processed_frames[index+1][i,j]
f2 = processed_frames[index+2][i,j]
f3 = processed_frames[index+3][i,j]
k = (frame[i,j], f1, f2, f3)
freq_dict3[k]=freq_dict3.get(k,0)+1
# logging.info(f"hist made for frame {index}")
return (freq_dict,freq_dict2,freq_dict3)
def extract_video(processed_frame_with_index):
processed_frames = [frame for frame, index in processed_frame_with_index]
num_processes = multiprocessing.cpu_count()
# logging.info(f"Using2 {num_processes} processes")
pool = multiprocessing.Pool(num_processes)
# process the frames in parallel
freq_dict_list = pool.starmap(each_frame, zip(processed_frame_with_index,itertools.repeat(processed_frames)))
pool.close()
pool.join()
return freq_dict_list
def final(freq_dict_list):
descriptors = []
for freq_dicts in freq_dict_list:
di1=[]
for freq_dict in freq_dicts:
frame = np.zeros(325);
for(k,v) in freq_dict.items():
frame[dt[k]]+=v
di1.append(frame);
descriptors.append(di1)
descriptors=np.array(descriptors);
desc_1d = descriptors.reshape(descriptors.shape[0],-1)
mean_1d = np.mean(desc_1d,axis=0)
co_variance_1d = np.zeros((1,1))
for frame in desc_1d:
mean_1d+=frame
mean_1d=frame/len(desc_1d)
for frame in desc_1d:
tmp = frame-mean_1d
co_variance_1d+=np.matmul(tmp,tmp.T)
co_variance_1d=co_variance_1d/len(desc_1d)
mean = np.zeros(descriptors[0].shape)
co_variance = np.zeros((3,3))
for frame in descriptors:
mean+=frame
mean=frame/len(descriptors)
# print(mean)
for frame in descriptors:
tmp=frame-mean
tc=np.matmul(tmp,tmp.T)
co_variance+=tc
co_variance=co_variance/len(descriptors)
return (mean,co_variance,descriptors,mean_1d,co_variance_1d,desc_1d)
def final_main(input1,input2):
f1 = read_file(input1)
of1 = read_file(input2)
pf1 = process_video(f1)
print("video1 processed residual and quantization")
pof1=process_video(of1)
print("video2 processed residual and quantization")
fd1 = extract_video(pf1)
print("video1 Created co-variance matrix")
ofd1 = extract_video(pof1)
print("video2 Created co-variance matrix")
mean1,co_variance1,disc1,mean_1d_1,co_variance_1d_1,desc_1d_1=final(fd1)
mean2,co_variance2,disc2,mean_1d_2,co_variance_1d_2,desc_1d_2=final(ofd1)
distances = []
print("creating Descriptors");
for index,disc in enumerate(disc1):
gm = disc - mean2
dm = np.matmul(np.matmul(gm.T,np.linalg.inv(co_variance2)),gm)
dm_sq = np.sqrt(np.abs(dm))
distances.append(dm_sq)
distances = np.array(distances)
dist2 = []
for index, disc in enumerate(disc2):
gm = disc - mean2
dm = np.matmul(np.matmul(gm.T,np.linalg.inv(co_variance2)),gm)
dm_sq = np.sqrt(np.abs(dm))
dist2.append(dm_sq)
dist2 = np.array(dist2)
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
height =f1[0][0].shape[0]+of1[0][0].shape[0]
width = 325+f1[0][0].shape[1]
video = cv2.VideoWriter('video.mp4', fourcc, 30, (width,height))
inital_diff,final_diff = 10000,-1
result = ''
print("writing video")
for index, dist in enumerate(distances):
heatmap = dist;
frame,index = f1[index]
different = False
if index<len(of1):
frame2 = of1[index][0]
diff = dist - dist2[index]
if not np.allclose(diff, np.zeros(diff.shape)):
different = True
inital_diff = min(inital_diff, index)
final_diff = max(final_diff, index)
sum1= np.sum(dist)
sum2 = np.sum(dist2[index])
new_im = Image.new('RGB', (width, height))
new_im.paste(Image.fromarray(frame), (0, 0))
new_im.paste(Image.fromarray(frame2), (0, frame.shape[0]))
heatmapshow = None
heatmapshow = cv2.normalize(heatmap, heatmapshow, alpha=0, beta=255, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_8U)
heatmapshow = cv2.applyColorMap(heatmapshow, cv2.COLORMAP_JET)
new_im.paste(Image.fromarray(heatmapshow), (frame.shape[1], 0))
draw = ImageDraw.Draw(new_im)
text = "The images are same."
if different:
text = "The images are different."
text_width, text_height = draw.textsize(text)
x = (new_im.width - text_width) / 2
y = (new_im.height - text_height) / 2
draw.text((x, y), text, fill=(255, 255, 255))
new_im = np.array(new_im)
video.write(new_im)
outputString = ""
if inital_diff != 10000:
outputString+=f"Initial difference at frame {inital_diff} at time {inital_diff/fps} seconds"
outputString+=f"Final difference at frame {final_diff} at time {final_diff/fps} seconds"
video.release()
if(outputString==""):
outputString= "Not tampering are detected"
return ("video.mp4",outputString)