Spaces:
Build error
Build error
import matplotlib.pyplot as plt | |
from PIL import ImageFont | |
from PIL import ImageDraw | |
import multiprocessing | |
from PIL import Image | |
import numpy as np | |
import itertools | |
# import logging | |
import math | |
import cv2 | |
import os | |
# logging.basicConfig(filename=f'{os.getcwd()}/frame_processing.log', level=logging.INFO) | |
# logging.info('Starting frame processing') | |
fps = 0 | |
def read_file(name): | |
global fps | |
cap = cv2.VideoCapture(name) | |
fps = cap.get(cv2.CAP_PROP_FPS) | |
if not cap.isOpened(): | |
# logging.error("Cannot open Video") | |
exit() | |
frames = [] | |
while True: | |
ret,frame = cap.read() | |
if not ret: | |
# logging.info("Can't receive frame (stream end?). Exiting ...") | |
break | |
frames.append(frame) | |
cap.release() | |
cv2.destroyAllWindows() | |
for i in range(len(frames)): | |
# print(frames[i].shape) | |
frames[i]=cv2.cvtColor(frames[i], cv2.COLOR_BGR2GRAY) | |
frames_with_index = [(frame, i) for i, frame in enumerate(frames)] | |
return frames_with_index | |
st = [0,1,2,3,4] | |
dt = {} | |
idx = 0; | |
l = (tuple(i) for i in itertools.product(st, repeat=4) if tuple(reversed(i)) >= tuple(i)) | |
l=list(l) | |
cnt = 0 | |
for i in range(0,len(l)): | |
lt=l[i] | |
mirror = tuple(reversed(lt)) | |
dt[mirror]=i; | |
dt[lt]=i; | |
def calc_filtered_img(img): | |
# residual_img= np.zeros(img.shape) | |
# residual_img = np.array(img); | |
fil = np.array([[-1,3,-3,1]]) | |
residual_img = cv2.filter2D(img, -1, fil) | |
# for i in range(img.shape[0]): | |
# for j in range(img.shape[1]): | |
# residual_img[i, j] = - 3*img[i, j]; | |
# if(j>0): | |
# residual_img[i, j] += img[i, j-1] | |
# if(j+1<img.shape[1]): | |
# residual_img[i, j] += 3*img[i, j+1] | |
# if(j+2<img.shape[1]): | |
# residual_img[i,j]-= img[i, j+2] | |
# residual_img = np.convolve(img,[1,-3,3,-1],mode='same') | |
return residual_img | |
def calc_q_t_img(img, q, t): | |
# qt_img = np.zeros(img.shape) | |
# for i in range(img.shape[0]): | |
# for j in range(img.shape[1]): | |
# val = np.minimum(t, np.maximum(-t, np.round(img[i, j]/q))) | |
# qt_img[i, j] = val | |
# print(dct) | |
qt_img = np.minimum(t, np.maximum(-t, np.round(img/q))) | |
return qt_img | |
def process_frame(frame_and_index): | |
frame, index = frame_and_index | |
# processing logic for a single frame | |
# logging.info(f"Processing frame {index}") | |
filtered_image = calc_filtered_img(frame) | |
output_image = calc_q_t_img(filtered_image, q, t) | |
output_image=output_image+2 | |
# plt.imshow(output_image) | |
return output_image.astype(np.uint8) | |
# Center the filtered image at zero by adding 128 | |
q = 3 | |
t = 2 | |
def process_video(frames_with_index): | |
num_processes = multiprocessing.cpu_count() | |
# logging.info(f"Using {num_processes} processes") | |
pool = multiprocessing.Pool(num_processes) | |
# process the frames in parallel | |
processed_frames = pool.map(process_frame, frames_with_index) | |
pool.close() | |
pool.join() | |
processed_frame_with_index = [(frame, i) for i, frame in enumerate(processed_frames)] | |
return processed_frame_with_index | |
co_occurrence_matrix_size = 5 | |
co_occurrence_matrix_distance = 4 | |
def each_frame(frame_and_index,processed_frames): | |
# go rowise and column wise | |
frame,index = frame_and_index | |
freq_dict = {} | |
for i in range( frame.shape[0]): | |
for j in range( frame.shape[1]-co_occurrence_matrix_distance): | |
row = frame[i] | |
v1 = row[j:j+4] | |
k1 = tuple(v1) | |
freq_dict[k1]=freq_dict.get(k1,0)+1 | |
freq_dict2={} | |
for i in range( frame.shape[0]-co_occurrence_matrix_distance): | |
for j in range( frame.shape[1]): | |
column = frame[:, j] | |
v2 = column[i:i+4] | |
k2 = tuple(v2) | |
freq_dict2[k2]=freq_dict2.get(k2,0)+1 | |
freq_dict3={} | |
for i in range( frame.shape[0]): | |
for j in range( frame.shape[1]): | |
# get next possible 4 frames | |
if index < len(processed_frames)-3: | |
f1 = processed_frames[index+1][i,j] | |
f2 = processed_frames[index+2][i,j] | |
f3 = processed_frames[index+3][i,j] | |
k = (frame[i,j], f1, f2, f3) | |
freq_dict3[k]=freq_dict3.get(k,0)+1 | |
# logging.info(f"hist made for frame {index}") | |
return (freq_dict,freq_dict2,freq_dict3) | |
def extract_video(processed_frame_with_index): | |
processed_frames = [frame for frame, index in processed_frame_with_index] | |
num_processes = multiprocessing.cpu_count() | |
# logging.info(f"Using2 {num_processes} processes") | |
pool = multiprocessing.Pool(num_processes) | |
# process the frames in parallel | |
freq_dict_list = pool.starmap(each_frame, zip(processed_frame_with_index,itertools.repeat(processed_frames))) | |
pool.close() | |
pool.join() | |
return freq_dict_list | |
def final(freq_dict_list): | |
descriptors = [] | |
for freq_dicts in freq_dict_list: | |
di1=[] | |
for freq_dict in freq_dicts: | |
frame = np.zeros(325); | |
for(k,v) in freq_dict.items(): | |
frame[dt[k]]+=v | |
di1.append(frame); | |
descriptors.append(di1) | |
descriptors=np.array(descriptors); | |
desc_1d = descriptors.reshape(descriptors.shape[0],-1) | |
mean_1d = np.mean(desc_1d,axis=0) | |
co_variance_1d = np.zeros((1,1)) | |
for frame in desc_1d: | |
mean_1d+=frame | |
mean_1d=frame/len(desc_1d) | |
for frame in desc_1d: | |
tmp = frame-mean_1d | |
co_variance_1d+=np.matmul(tmp,tmp.T) | |
co_variance_1d=co_variance_1d/len(desc_1d) | |
mean = np.zeros(descriptors[0].shape) | |
co_variance = np.zeros((3,3)) | |
for frame in descriptors: | |
mean+=frame | |
mean=frame/len(descriptors) | |
# print(mean) | |
for frame in descriptors: | |
tmp=frame-mean | |
tc=np.matmul(tmp,tmp.T) | |
co_variance+=tc | |
co_variance=co_variance/len(descriptors) | |
return (mean,co_variance,descriptors,mean_1d,co_variance_1d,desc_1d) | |
def final_main(input1,input2): | |
f1 = read_file(input1) | |
of1 = read_file(input2) | |
pf1 = process_video(f1) | |
print("video1 processed residual and quantization") | |
pof1=process_video(of1) | |
print("video2 processed residual and quantization") | |
fd1 = extract_video(pf1) | |
print("video1 Created co-variance matrix") | |
ofd1 = extract_video(pof1) | |
print("video2 Created co-variance matrix") | |
mean1,co_variance1,disc1,mean_1d_1,co_variance_1d_1,desc_1d_1=final(fd1) | |
mean2,co_variance2,disc2,mean_1d_2,co_variance_1d_2,desc_1d_2=final(ofd1) | |
distances = [] | |
print("creating Descriptors"); | |
for index,disc in enumerate(disc1): | |
gm = disc - mean2 | |
dm = np.matmul(np.matmul(gm.T,np.linalg.inv(co_variance2)),gm) | |
dm_sq = np.sqrt(np.abs(dm)) | |
distances.append(dm_sq) | |
distances = np.array(distances) | |
dist2 = [] | |
for index, disc in enumerate(disc2): | |
gm = disc - mean2 | |
dm = np.matmul(np.matmul(gm.T,np.linalg.inv(co_variance2)),gm) | |
dm_sq = np.sqrt(np.abs(dm)) | |
dist2.append(dm_sq) | |
dist2 = np.array(dist2) | |
fourcc = cv2.VideoWriter_fourcc(*'mp4v') | |
height =f1[0][0].shape[0]+of1[0][0].shape[0] | |
width = 325+f1[0][0].shape[1] | |
video = cv2.VideoWriter('video.mp4', fourcc, 30, (width,height)) | |
inital_diff,final_diff = 10000,-1 | |
result = '' | |
print("writing video") | |
for index, dist in enumerate(distances): | |
heatmap = dist; | |
frame,index = f1[index] | |
different = False | |
if index<len(of1): | |
frame2 = of1[index][0] | |
diff = dist - dist2[index] | |
if not np.allclose(diff, np.zeros(diff.shape)): | |
different = True | |
inital_diff = min(inital_diff, index) | |
final_diff = max(final_diff, index) | |
sum1= np.sum(dist) | |
sum2 = np.sum(dist2[index]) | |
new_im = Image.new('RGB', (width, height)) | |
new_im.paste(Image.fromarray(frame), (0, 0)) | |
new_im.paste(Image.fromarray(frame2), (0, frame.shape[0])) | |
heatmapshow = None | |
heatmapshow = cv2.normalize(heatmap, heatmapshow, alpha=0, beta=255, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_8U) | |
heatmapshow = cv2.applyColorMap(heatmapshow, cv2.COLORMAP_JET) | |
new_im.paste(Image.fromarray(heatmapshow), (frame.shape[1], 0)) | |
draw = ImageDraw.Draw(new_im) | |
text = "The images are same." | |
if different: | |
text = "The images are different." | |
text_width, text_height = draw.textsize(text) | |
x = (new_im.width - text_width) / 2 | |
y = (new_im.height - text_height) / 2 | |
draw.text((x, y), text, fill=(255, 255, 255)) | |
new_im = np.array(new_im) | |
video.write(new_im) | |
outputString = "" | |
if inital_diff != 10000: | |
outputString+=f"Initial difference at frame {inital_diff} at time {inital_diff/fps} seconds" | |
outputString+=f"Final difference at frame {final_diff} at time {final_diff/fps} seconds" | |
video.release() | |
if(outputString==""): | |
outputString= "Not tampering are detected" | |
return ("video.mp4",outputString) |