Spaces:
Sleeping
Sleeping
Upload 6 files
Browse filestraining commit
- .gitignore +165 -0
- app.py +408 -0
- requirements.txt +16 -0
- skin_cancer_model.h5 +3 -0
.gitignore
ADDED
@@ -0,0 +1,165 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#Inserted by me
|
2 |
+
digit_model.h5
|
3 |
+
digit_model.keras
|
4 |
+
|
5 |
+
# Byte-compiled / optimized / DLL files
|
6 |
+
__pycache__/
|
7 |
+
*.py[cod]
|
8 |
+
*$py.class
|
9 |
+
|
10 |
+
|
11 |
+
# C extensions
|
12 |
+
*.so
|
13 |
+
|
14 |
+
# Distribution / packaging
|
15 |
+
.Python
|
16 |
+
build/
|
17 |
+
develop-eggs/
|
18 |
+
dist/
|
19 |
+
downloads/
|
20 |
+
eggs/
|
21 |
+
.eggs/
|
22 |
+
lib/
|
23 |
+
lib64/
|
24 |
+
parts/
|
25 |
+
sdist/
|
26 |
+
var/
|
27 |
+
wheels/
|
28 |
+
share/python-wheels/
|
29 |
+
*.egg-info/
|
30 |
+
.installed.cfg
|
31 |
+
*.egg
|
32 |
+
MANIFEST
|
33 |
+
|
34 |
+
# PyInstaller
|
35 |
+
# Usually these files are written by a python script from a template
|
36 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
37 |
+
*.manifest
|
38 |
+
*.spec
|
39 |
+
|
40 |
+
# Installer logs
|
41 |
+
pip-log.txt
|
42 |
+
pip-delete-this-directory.txt
|
43 |
+
|
44 |
+
# Unit test / coverage reports
|
45 |
+
htmlcov/
|
46 |
+
.tox/
|
47 |
+
.nox/
|
48 |
+
.coverage
|
49 |
+
.coverage.*
|
50 |
+
.cache
|
51 |
+
nosetests.xml
|
52 |
+
coverage.xml
|
53 |
+
*.cover
|
54 |
+
*.py,cover
|
55 |
+
.hypothesis/
|
56 |
+
.pytest_cache/
|
57 |
+
cover/
|
58 |
+
|
59 |
+
# Translations
|
60 |
+
*.mo
|
61 |
+
*.pot
|
62 |
+
|
63 |
+
# Django stuff:
|
64 |
+
*.log
|
65 |
+
local_settings.py
|
66 |
+
db.sqlite3
|
67 |
+
db.sqlite3-journal
|
68 |
+
|
69 |
+
# Flask stuff:
|
70 |
+
instance/
|
71 |
+
.webassets-cache
|
72 |
+
|
73 |
+
# Scrapy stuff:
|
74 |
+
.scrapy
|
75 |
+
|
76 |
+
# Sphinx documentation
|
77 |
+
docs/_build/
|
78 |
+
|
79 |
+
# PyBuilder
|
80 |
+
.pybuilder/
|
81 |
+
target/
|
82 |
+
|
83 |
+
# Jupyter Notebook
|
84 |
+
.ipynb_checkpoints
|
85 |
+
|
86 |
+
# IPython
|
87 |
+
profile_default/
|
88 |
+
ipython_config.py
|
89 |
+
|
90 |
+
# pyenv
|
91 |
+
# For a library or package, you might want to ignore these files since the code is
|
92 |
+
# intended to run in multiple environments; otherwise, check them in:
|
93 |
+
# .python-version
|
94 |
+
|
95 |
+
# pipenv
|
96 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
97 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
98 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
99 |
+
# install all needed dependencies.
|
100 |
+
#Pipfile.lock
|
101 |
+
|
102 |
+
# poetry
|
103 |
+
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
104 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
105 |
+
# commonly ignored for libraries.
|
106 |
+
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
107 |
+
#poetry.lock
|
108 |
+
|
109 |
+
# pdm
|
110 |
+
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
111 |
+
#pdm.lock
|
112 |
+
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
113 |
+
# in version control.
|
114 |
+
# https://pdm.fming.dev/#use-with-ide
|
115 |
+
.pdm.toml
|
116 |
+
|
117 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
118 |
+
__pypackages__/
|
119 |
+
|
120 |
+
# Celery stuff
|
121 |
+
celerybeat-schedule
|
122 |
+
celerybeat.pid
|
123 |
+
|
124 |
+
# SageMath parsed files
|
125 |
+
*.sage.py
|
126 |
+
|
127 |
+
# Environments
|
128 |
+
.env
|
129 |
+
.venv
|
130 |
+
env/
|
131 |
+
venv/
|
132 |
+
ENV/
|
133 |
+
env.bak/
|
134 |
+
venv.bak/
|
135 |
+
|
136 |
+
# Spyder project settings
|
137 |
+
.spyderproject
|
138 |
+
.spyproject
|
139 |
+
|
140 |
+
# Rope project settings
|
141 |
+
.ropeproject
|
142 |
+
|
143 |
+
# mkdocs documentation
|
144 |
+
/site
|
145 |
+
|
146 |
+
# mypy
|
147 |
+
.mypy_cache/
|
148 |
+
.dmypy.json
|
149 |
+
dmypy.json
|
150 |
+
|
151 |
+
# Pyre type checker
|
152 |
+
.pyre/
|
153 |
+
|
154 |
+
# pytype static type analyzer
|
155 |
+
.pytype/
|
156 |
+
|
157 |
+
# Cython debug symbols
|
158 |
+
cython_debug/
|
159 |
+
|
160 |
+
# PyCharm
|
161 |
+
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
162 |
+
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
163 |
+
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
164 |
+
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
165 |
+
#.idea/
|
app.py
ADDED
@@ -0,0 +1,408 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# import system libs
|
2 |
+
import os
|
3 |
+
import time
|
4 |
+
import shutil
|
5 |
+
import itertools
|
6 |
+
|
7 |
+
# import data handling tools
|
8 |
+
import cv2
|
9 |
+
import numpy as np
|
10 |
+
import pandas as pd
|
11 |
+
import seaborn as sns
|
12 |
+
sns.set_style('darkgrid')
|
13 |
+
import matplotlib.pyplot as plt
|
14 |
+
import gradio as gr
|
15 |
+
|
16 |
+
# import Deep learning Libraries
|
17 |
+
import tensorflow as tf
|
18 |
+
from tensorflow import keras
|
19 |
+
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Activation, Dropout, BatchNormalization
|
20 |
+
from tensorflow.keras.models import Model, load_model, Sequential
|
21 |
+
from tensorflow.keras.preprocessing.image import ImageDataGenerator
|
22 |
+
from sklearn.metrics import confusion_matrix, classification_report
|
23 |
+
from sklearn.model_selection import train_test_split
|
24 |
+
from tensorflow.keras.optimizers import Adam, Adamax
|
25 |
+
from tensorflow.keras import regularizers
|
26 |
+
from tensorflow.keras.metrics import categorical_crossentropy
|
27 |
+
from tensorflow.keras.utils import to_categorical
|
28 |
+
from PIL import Image
|
29 |
+
from sklearn.model_selection import train_test_split
|
30 |
+
|
31 |
+
|
32 |
+
# Ignore Warnings
|
33 |
+
import warnings
|
34 |
+
warnings.filterwarnings("ignore")
|
35 |
+
print ('modules loaded')
|
36 |
+
#---Training-----------------------------
|
37 |
+
# ! pip install -q kaggle
|
38 |
+
# from google.colab import files
|
39 |
+
|
40 |
+
# files.upload()
|
41 |
+
# ! mkdir ~/.kaggle
|
42 |
+
|
43 |
+
# ! cp kaggle.json ~/.kaggle/
|
44 |
+
# ! chmod 600 ~/.kaggle/kaggle.json
|
45 |
+
# ! kaggle datasets list
|
46 |
+
# !kaggle datasets download -d kmader/skin-cancer-mnist-ham10000
|
47 |
+
# ! mkdir kaggle
|
48 |
+
# ! unzip skin-cancer-mnist-ham10000.zip -d kaggle
|
49 |
+
# data_dir = '/content/kaggle/hmnist_28_28_RGB.csv'
|
50 |
+
# data = pd.read_csv(data_dir)
|
51 |
+
# print(data.shape)
|
52 |
+
# data.head()
|
53 |
+
|
54 |
+
# Label = data["label"]
|
55 |
+
# Data = data.drop(columns=["label"])
|
56 |
+
# print(data.shape)
|
57 |
+
# Data.head()
|
58 |
+
|
59 |
+
# from imblearn.over_sampling import RandomOverSampler
|
60 |
+
|
61 |
+
# oversample = RandomOverSampler()
|
62 |
+
# Data, Label = oversample.fit_resample(Data, Label)
|
63 |
+
# print(Data.shape)
|
64 |
+
# Data = np.array(Data).reshape(-1,28, 28,3)
|
65 |
+
# print('Shape of Data :', Data.shape)
|
66 |
+
|
67 |
+
# Label = np.array(Label)
|
68 |
+
# Label
|
69 |
+
# classes = {4: ('nv', ' melanocytic nevi'),
|
70 |
+
# 6: ('mel', 'melanoma'),
|
71 |
+
# 2 :('bkl', 'benign keratosis-like lesions'),
|
72 |
+
# 1:('bcc' , ' basal cell carcinoma'),
|
73 |
+
# 5: ('vasc', ' pyogenic granulomas and hemorrhage'),
|
74 |
+
# 0: ('akiec', 'Actinic keratoses and intraepithelial carcinomae'),
|
75 |
+
# 3: ('df', 'dermatofibroma')}
|
76 |
+
|
77 |
+
|
78 |
+
|
79 |
+
# X_train , X_test , y_train , y_test = train_test_split(Data , Label , test_size = 0.25 , random_state = 49)
|
80 |
+
|
81 |
+
# print(f'X_train shape: {X_train.shape}\nX_test shape: {X_test.shape}')
|
82 |
+
# print(f'y_train shape: {y_train.shape}\ny_test shape: {y_test.shape}')
|
83 |
+
|
84 |
+
# y_train = to_categorical(y_train)
|
85 |
+
# y_test = to_categorical(y_test)
|
86 |
+
|
87 |
+
# datagen = ImageDataGenerator(rescale=(1./255)
|
88 |
+
# ,rotation_range=10
|
89 |
+
# ,zoom_range = 0.1
|
90 |
+
# ,width_shift_range=0.1
|
91 |
+
# ,height_shift_range=0.1)
|
92 |
+
|
93 |
+
# testgen = ImageDataGenerator(rescale=(1./255))
|
94 |
+
|
95 |
+
# from keras.callbacks import ReduceLROnPlateau
|
96 |
+
|
97 |
+
# learning_rate_reduction = ReduceLROnPlateau(monitor='val_accuracy'
|
98 |
+
# , patience = 2
|
99 |
+
# , verbose=1
|
100 |
+
# ,factor=0.5
|
101 |
+
# , min_lr=0.00001)
|
102 |
+
|
103 |
+
# model = keras.models.Sequential()
|
104 |
+
|
105 |
+
# # Create Model Structure
|
106 |
+
# model.add(keras.layers.Input(shape=[28, 28, 3]))
|
107 |
+
# model.add(keras.layers.Conv2D(32, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal'))
|
108 |
+
# model.add(keras.layers.MaxPooling2D())
|
109 |
+
# model.add(keras.layers.BatchNormalization())
|
110 |
+
|
111 |
+
# model.add(keras.layers.Conv2D(64, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal'))
|
112 |
+
# model.add(keras.layers.Conv2D(64, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal'))
|
113 |
+
# model.add(keras.layers.MaxPooling2D())
|
114 |
+
# model.add(keras.layers.BatchNormalization())
|
115 |
+
|
116 |
+
# model.add(keras.layers.Conv2D(128, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal'))
|
117 |
+
# model.add(keras.layers.Conv2D(128, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal'))
|
118 |
+
# model.add(keras.layers.MaxPooling2D())
|
119 |
+
# model.add(keras.layers.BatchNormalization())
|
120 |
+
|
121 |
+
# model.add(keras.layers.Conv2D(256, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal'))
|
122 |
+
# model.add(keras.layers.Conv2D(256, (3, 3), activation='relu', padding='same', kernel_initializer='he_normal'))
|
123 |
+
# model.add(keras.layers.MaxPooling2D())
|
124 |
+
|
125 |
+
# model.add(keras.layers.Flatten())
|
126 |
+
|
127 |
+
# model.add(keras.layers.Dropout(rate=0.2))
|
128 |
+
# model.add(keras.layers.Dense(units=256, activation='relu', kernel_initializer='he_normal'))
|
129 |
+
# model.add(keras.layers.BatchNormalization())
|
130 |
+
|
131 |
+
# model.add(keras.layers.Dense(units=128, activation='relu', kernel_initializer='he_normal'))
|
132 |
+
# model.add(keras.layers.BatchNormalization())
|
133 |
+
|
134 |
+
# model.add(keras.layers.Dense(units=64, activation='relu', kernel_initializer='he_normal'))
|
135 |
+
# model.add(keras.layers.BatchNormalization())
|
136 |
+
|
137 |
+
# model.add(keras.layers.Dense(units=32, activation='relu', kernel_initializer='he_normal', kernel_regularizer=keras.regularizers.L1L2()))
|
138 |
+
# model.add(keras.layers.BatchNormalization())
|
139 |
+
|
140 |
+
# model.add(keras.layers.Dense(units=7, activation='softmax', kernel_initializer='glorot_uniform', name='classifier'))
|
141 |
+
|
142 |
+
# model.compile(Adamax(learning_rate= 0.001), loss= 'categorical_crossentropy', metrics= ['accuracy'])
|
143 |
+
|
144 |
+
# model.summary()
|
145 |
+
|
146 |
+
# history = model.fit(X_train ,
|
147 |
+
# y_train ,
|
148 |
+
# epochs=25 ,
|
149 |
+
# batch_size=128,
|
150 |
+
# validation_data=(X_test , y_test) ,
|
151 |
+
# callbacks=[learning_rate_reduction])
|
152 |
+
|
153 |
+
# def plot_training(hist):
|
154 |
+
# tr_acc = hist.history['accuracy']
|
155 |
+
# tr_loss = hist.history['loss']
|
156 |
+
# val_acc = hist.history['val_accuracy']
|
157 |
+
# val_loss = hist.history['val_loss']
|
158 |
+
# index_loss = np.argmin(val_loss)
|
159 |
+
# val_lowest = val_loss[index_loss]
|
160 |
+
# index_acc = np.argmax(val_acc)
|
161 |
+
# acc_highest = val_acc[index_acc]
|
162 |
+
|
163 |
+
# plt.figure(figsize= (20, 8))
|
164 |
+
# plt.style.use('fivethirtyeight')
|
165 |
+
# Epochs = [i+1 for i in range(len(tr_acc))]
|
166 |
+
# loss_label = f'best epoch= {str(index_loss + 1)}'
|
167 |
+
# acc_label = f'best epoch= {str(index_acc + 1)}'
|
168 |
+
|
169 |
+
# plt.subplot(1, 2, 1)
|
170 |
+
# plt.plot(Epochs, tr_loss, 'r', label= 'Training loss')
|
171 |
+
# plt.plot(Epochs, val_loss, 'g', label= 'Validation loss')
|
172 |
+
# plt.scatter(index_loss + 1, val_lowest, s= 150, c= 'blue', label= loss_label)
|
173 |
+
# plt.title('Training and Validation Loss')
|
174 |
+
# plt.xlabel('Epochs')
|
175 |
+
# plt.ylabel('Loss')
|
176 |
+
# plt.legend()
|
177 |
+
|
178 |
+
# plt.subplot(1, 2, 2)
|
179 |
+
# plt.plot(Epochs, tr_acc, 'r', label= 'Training Accuracy')
|
180 |
+
# plt.plot(Epochs, val_acc, 'g', label= 'Validation Accuracy')
|
181 |
+
# plt.scatter(index_acc + 1 , acc_highest, s= 150, c= 'blue', label= acc_label)
|
182 |
+
# plt.title('Training and Validation Accuracy')
|
183 |
+
# plt.xlabel('Epochs')
|
184 |
+
# plt.ylabel('Accuracy')
|
185 |
+
# plt.legend()
|
186 |
+
|
187 |
+
# plt.tight_layout
|
188 |
+
# plt.show()
|
189 |
+
|
190 |
+
# plot_training(history)
|
191 |
+
|
192 |
+
# train_score = model.evaluate(X_train, y_train, verbose= 1)
|
193 |
+
# test_score = model.evaluate(X_test, y_test, verbose= 1)
|
194 |
+
|
195 |
+
# print("Train Loss: ", train_score[0])
|
196 |
+
# print("Train Accuracy: ", train_score[1])
|
197 |
+
# print('-' * 20)
|
198 |
+
# print("Test Loss: ", test_score[0])
|
199 |
+
# print("Test Accuracy: ", test_score[1])
|
200 |
+
|
201 |
+
# y_true = np.array(y_test)
|
202 |
+
# y_pred = model.predict(X_test)
|
203 |
+
|
204 |
+
# y_pred = np.argmax(y_pred , axis=1)
|
205 |
+
# y_true = np.argmax(y_true , axis=1)
|
206 |
+
|
207 |
+
# classes_labels = []
|
208 |
+
# for key in classes.keys():
|
209 |
+
# classes_labels.append(key)
|
210 |
+
|
211 |
+
# print(classes_labels)
|
212 |
+
|
213 |
+
# # Confusion matrix
|
214 |
+
# cm = cm = confusion_matrix(y_true, y_pred, labels=classes_labels)
|
215 |
+
|
216 |
+
# plt.figure(figsize= (10, 10))
|
217 |
+
# plt.imshow(cm, interpolation= 'nearest', cmap= plt.cm.Blues)
|
218 |
+
# plt.title('Confusion Matrix')
|
219 |
+
# plt.colorbar()
|
220 |
+
|
221 |
+
# tick_marks = np.arange(len(classes))
|
222 |
+
# plt.xticks(tick_marks, classes, rotation= 45)
|
223 |
+
# plt.yticks(tick_marks, classes)
|
224 |
+
|
225 |
+
|
226 |
+
# thresh = cm.max() / 2.
|
227 |
+
# for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
|
228 |
+
# plt.text(j, i, cm[i, j], horizontalalignment= 'center', color= 'white' if cm[i, j] > thresh else 'black')
|
229 |
+
|
230 |
+
# plt.tight_layout()
|
231 |
+
# plt.ylabel('True Label')
|
232 |
+
# plt.xlabel('Predicted Label')
|
233 |
+
|
234 |
+
# plt.show()
|
235 |
+
|
236 |
+
# #Save the model
|
237 |
+
# model.save('skin_cancer_model.h5')
|
238 |
+
|
239 |
+
# converter = tf.lite.TFLiteConverter.from_keras_model(model)
|
240 |
+
# tflite_model = converter.convert()
|
241 |
+
|
242 |
+
# print("model converted")
|
243 |
+
|
244 |
+
# # Save the model.
|
245 |
+
# with open('skin_cancer_model.tflite', 'wb') as f:
|
246 |
+
# f.write(tflite_model)
|
247 |
+
|
248 |
+
#Training End------------------------------------------
|
249 |
+
|
250 |
+
skin_classes = {4: ('nv', ' melanocytic nevi'),
|
251 |
+
6: ('mel', 'melanoma'),
|
252 |
+
2 :('bkl', 'benign keratosis-like lesions'),
|
253 |
+
1:('bcc' , ' basal cell carcinoma'),
|
254 |
+
5: ('vasc', ' pyogenic granulomas and hemorrhage'),
|
255 |
+
0: ('akiec', 'Actinic keratoses and intraepithelial carcinomae'),
|
256 |
+
3: ('df', 'dermatofibroma')}
|
257 |
+
|
258 |
+
#Use saved model
|
259 |
+
loaded_model = tf.keras.models.load_model('skin_cancer_model.h5', compile=False)
|
260 |
+
loaded_model.compile(Adamax(learning_rate= 0.001), loss= 'categorical_crossentropy', metrics= ['accuracy'])
|
261 |
+
|
262 |
+
def predict_digit(image):
|
263 |
+
if image is not None:
|
264 |
+
|
265 |
+
#Use saved model
|
266 |
+
loaded_model = tf.keras.models.load_model('skin_cancer_model.h5', compile=False)
|
267 |
+
loaded_model.compile(Adamax(learning_rate= 0.001), loss= 'categorical_crossentropy', metrics= ['accuracy'])
|
268 |
+
img = image.resize((28, 28))
|
269 |
+
img_array = tf.keras.preprocessing.image.img_to_array(img)
|
270 |
+
img_array = tf.expand_dims(img_array, 0)
|
271 |
+
print(img_array)
|
272 |
+
|
273 |
+
|
274 |
+
|
275 |
+
predictions = loaded_model.predict(img_array)
|
276 |
+
print(predictions)
|
277 |
+
#class_labels = [] # data classes
|
278 |
+
score = tf.nn.softmax(predictions[0])*100
|
279 |
+
|
280 |
+
|
281 |
+
print(score)
|
282 |
+
print(skin_classes[np.argmax(score)])
|
283 |
+
simple = pd.DataFrame(
|
284 |
+
{
|
285 |
+
"skin condition": ["akiec", "bcc", "bkl", "df", "nv", "vasc", "mel"],
|
286 |
+
"probability": score,
|
287 |
+
"full skin condition": [ 'Actinic keratoses',
|
288 |
+
' basal cell carcinoma',
|
289 |
+
'benign keratosis-like lesions',
|
290 |
+
'dermatofibroma',
|
291 |
+
' melanocytic nevi',
|
292 |
+
' pyogenic granulomas and hemorrhage',
|
293 |
+
'melanoma'],
|
294 |
+
}
|
295 |
+
)
|
296 |
+
|
297 |
+
|
298 |
+
|
299 |
+
|
300 |
+
predicted_skin_condition=skin_classes[np.argmax(score)][1]+" ("+ skin_classes[np.argmax(score)][0]+")"
|
301 |
+
return predicted_skin_condition, gr.BarPlot.update(
|
302 |
+
simple,
|
303 |
+
x="skin condition",
|
304 |
+
y="probability",
|
305 |
+
x_title="Skin Condition",
|
306 |
+
y_title="Classification Probabilities",
|
307 |
+
title="Skin Cancer Classification Probability",
|
308 |
+
tooltip=["full skin condition", "probability"],
|
309 |
+
vertical=False,
|
310 |
+
y_lim=[0, 100],
|
311 |
+
color="full skin condition"
|
312 |
+
)
|
313 |
+
|
314 |
+
else:
|
315 |
+
simple_empty = pd.DataFrame(
|
316 |
+
{
|
317 |
+
"skin condition": ["akiec", "bcc", "bkl", "df", "nv", "vasc", "mel"],
|
318 |
+
"probability": [0,0,0,0,0,0,0],
|
319 |
+
"full skin condition": [ 'Actinic keratoses',
|
320 |
+
' basal cell carcinoma',
|
321 |
+
'benign keratosis-like lesions',
|
322 |
+
'dermatofibroma',
|
323 |
+
' melanocytic nevi',
|
324 |
+
' pyogenic granulomas and hemorrhage',
|
325 |
+
'melanoma'],
|
326 |
+
}
|
327 |
+
)
|
328 |
+
|
329 |
+
return " ", gr.BarPlot.update(
|
330 |
+
simple_empty,
|
331 |
+
x="skin condition",
|
332 |
+
y="probability",
|
333 |
+
x_title="Digits",
|
334 |
+
y_title="Identification Probabilities",
|
335 |
+
title="Identification Probability",
|
336 |
+
tooltip=["full skin condition", "probability"],
|
337 |
+
vertical=False,
|
338 |
+
y_lim=[0, 100],
|
339 |
+
|
340 |
+
)
|
341 |
+
|
342 |
+
skin_images = [
|
343 |
+
("skin_image/mel.jpg",'mel'),
|
344 |
+
("skin_image/nv3.jpg",'nv'),
|
345 |
+
("skin_image/bkl.jpg",'bkl'),
|
346 |
+
("skin_image/df.jpg",'df'),
|
347 |
+
("skin_image/akiec.jpg",'akiec'),
|
348 |
+
("skin_image/bcc.jpg",'bcc'),
|
349 |
+
("skin_image/vasc.jpg",'vasc'),
|
350 |
+
("skin_image/nv2.jpg",'nv'),
|
351 |
+
("skin_image/akiec2.jpg",'akiec'),
|
352 |
+
("skin_image/bkl2.jpg",'bkl'),
|
353 |
+
("skin_image/nv.jpg",'nv'),
|
354 |
+
|
355 |
+
]
|
356 |
+
|
357 |
+
def image_from_gallary(evt: gr.SelectData):
|
358 |
+
print(evt.index)
|
359 |
+
return skin_images[evt.index][0]
|
360 |
+
|
361 |
+
|
362 |
+
|
363 |
+
css='''
|
364 |
+
#title_head{
|
365 |
+
text-align: center;
|
366 |
+
text-weight: bold;
|
367 |
+
text-size:30px;
|
368 |
+
}
|
369 |
+
#name_head{
|
370 |
+
text-align: center;
|
371 |
+
}
|
372 |
+
'''
|
373 |
+
|
374 |
+
with gr.Blocks(css=css) as demo:
|
375 |
+
|
376 |
+
|
377 |
+
with gr.Row():
|
378 |
+
with gr.Column():
|
379 |
+
gr.Markdown("<h1>Skin Cancer Classifier</h1>", elem_id='title_head')
|
380 |
+
gr.Markdown("<h2>By Alok</h2>", elem_id="name_head")
|
381 |
+
with gr.Row():
|
382 |
+
with gr.Column():
|
383 |
+
gr.Markdown("<h3>Browse or Select from given Image</h3>", elem_id='info')
|
384 |
+
with gr.Row():
|
385 |
+
img_upload=gr.Image(type="pil")
|
386 |
+
with gr.Row():
|
387 |
+
with gr.Column():
|
388 |
+
clear=gr.ClearButton(img_upload)
|
389 |
+
with gr.Column():
|
390 |
+
btn=gr.Button("Identify")
|
391 |
+
gry=gr.Gallery(value=skin_images, columns=3, rows=2, show_label=True)
|
392 |
+
|
393 |
+
with gr.Column():
|
394 |
+
gr.Markdown("Most probable skin condition")
|
395 |
+
label=gr.Label("")
|
396 |
+
gr.Markdown("Other possible values")
|
397 |
+
bar = gr.BarPlot()
|
398 |
+
|
399 |
+
|
400 |
+
btn.click(predict_digit,inputs=[img_upload],outputs=[label,bar])
|
401 |
+
gry.select(image_from_gallary, outputs=img_upload)
|
402 |
+
|
403 |
+
|
404 |
+
|
405 |
+
|
406 |
+
demo.launch(debug=True)
|
407 |
+
|
408 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
tensorflow
|
2 |
+
keras
|
3 |
+
|
4 |
+
scikit_learn<1.3.0
|
5 |
+
seaborn==0.12.2
|
6 |
+
|
7 |
+
|
8 |
+
gradio
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
|
13 |
+
|
14 |
+
|
15 |
+
|
16 |
+
|
skin_cancer_model.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9679368b2f6da9e936c2b9306044d7b90e887189ee279d643c86aede2b844f75
|
3 |
+
size 15456152
|