Spaces:
Sleeping
Sleeping
Upload model_utils.py
Browse files- model_utils.py +101 -0
model_utils.py
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# coding=utf-8
|
3 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
|
17 |
+
from typing import Dict
|
18 |
+
|
19 |
+
import torch
|
20 |
+
from transformers import AutoTokenizer, BitsAndBytesConfig, PreTrainedTokenizer
|
21 |
+
|
22 |
+
from accelerate import Accelerator
|
23 |
+
from huggingface_hub import list_repo_files
|
24 |
+
from peft import LoraConfig, PeftConfig
|
25 |
+
|
26 |
+
from .configs import DataArguments, ModelArguments
|
27 |
+
from .data import DEFAULT_CHAT_TEMPLATE
|
28 |
+
|
29 |
+
|
30 |
+
def get_current_device() -> int:
|
31 |
+
"""Get the current device. For GPU we return the local process index to enable multiple GPU training."""
|
32 |
+
return Accelerator().local_process_index if torch.cuda.is_available() else "cpu"
|
33 |
+
|
34 |
+
|
35 |
+
def get_kbit_device_map() -> Dict[str, int] | None:
|
36 |
+
"""Useful for running inference with quantized models by setting `device_map=get_peft_device_map()`"""
|
37 |
+
return {"": get_current_device()} if torch.cuda.is_available() else None
|
38 |
+
|
39 |
+
|
40 |
+
def get_quantization_config(model_args) -> BitsAndBytesConfig | None:
|
41 |
+
if model_args.load_in_4bit:
|
42 |
+
quantization_config = BitsAndBytesConfig(
|
43 |
+
load_in_4bit=True,
|
44 |
+
bnb_4bit_compute_dtype=torch.float16, # For consistency with model weights, we use the same value as `torch_dtype` which is float16 for PEFT models
|
45 |
+
bnb_4bit_quant_type=model_args.bnb_4bit_quant_type,
|
46 |
+
bnb_4bit_use_double_quant=model_args.use_bnb_nested_quant,
|
47 |
+
)
|
48 |
+
elif model_args.load_in_8bit:
|
49 |
+
quantization_config = BitsAndBytesConfig(
|
50 |
+
load_in_8bit=True,
|
51 |
+
)
|
52 |
+
else:
|
53 |
+
quantization_config = None
|
54 |
+
|
55 |
+
return quantization_config
|
56 |
+
|
57 |
+
|
58 |
+
def get_tokenizer(model_args: ModelArguments, data_args: DataArguments) -> PreTrainedTokenizer:
|
59 |
+
"""Get the tokenizer for the model."""
|
60 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
61 |
+
model_args.model_name_or_path,
|
62 |
+
revision=model_args.model_revision,
|
63 |
+
)
|
64 |
+
if tokenizer.pad_token_id is None:
|
65 |
+
tokenizer.pad_token_id = tokenizer.eos_token_id
|
66 |
+
|
67 |
+
if data_args.truncation_side is not None:
|
68 |
+
tokenizer.truncation_side = data_args.truncation_side
|
69 |
+
|
70 |
+
# Set reasonable default for models without max length
|
71 |
+
if tokenizer.model_max_length > 100_000:
|
72 |
+
tokenizer.model_max_length = 2048
|
73 |
+
|
74 |
+
if data_args.chat_template is not None:
|
75 |
+
tokenizer.chat_template = data_args.chat_template
|
76 |
+
elif tokenizer.chat_template is None:
|
77 |
+
tokenizer.chat_template = DEFAULT_CHAT_TEMPLATE
|
78 |
+
|
79 |
+
return tokenizer
|
80 |
+
|
81 |
+
|
82 |
+
def get_peft_config(model_args: ModelArguments) -> PeftConfig | None:
|
83 |
+
if model_args.use_peft is False:
|
84 |
+
return None
|
85 |
+
|
86 |
+
peft_config = LoraConfig(
|
87 |
+
r=model_args.lora_r,
|
88 |
+
lora_alpha=model_args.lora_alpha,
|
89 |
+
lora_dropout=model_args.lora_dropout,
|
90 |
+
bias="none",
|
91 |
+
task_type="CAUSAL_LM",
|
92 |
+
target_modules=model_args.lora_target_modules,
|
93 |
+
modules_to_save=model_args.lora_modules_to_save,
|
94 |
+
)
|
95 |
+
|
96 |
+
return peft_config
|
97 |
+
|
98 |
+
|
99 |
+
def is_adapter_model(model_name_or_path: str, revision: str = "main") -> bool:
|
100 |
+
repo_files = list_repo_files(model_name_or_path, revision=revision)
|
101 |
+
return "adapter_model.safetensors" in repo_files or "adapter_model.bin" in repo_files
|