# coding=utf-8 # coding=utf-8 # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict import torch from transformers import AutoTokenizer, BitsAndBytesConfig, PreTrainedTokenizer from accelerate import Accelerator from huggingface_hub import list_repo_files from peft import LoraConfig, PeftConfig from .configs import DataArguments, ModelArguments from .data import DEFAULT_CHAT_TEMPLATE def get_current_device() -> int: """Get the current device. For GPU we return the local process index to enable multiple GPU training.""" return Accelerator().local_process_index if torch.cuda.is_available() else "cpu" def get_kbit_device_map() -> Dict[str, int] | None: """Useful for running inference with quantized models by setting `device_map=get_peft_device_map()`""" return {"": get_current_device()} if torch.cuda.is_available() else None def get_quantization_config(model_args) -> BitsAndBytesConfig | None: if model_args.load_in_4bit: quantization_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_compute_dtype=torch.float16, # For consistency with model weights, we use the same value as `torch_dtype` which is float16 for PEFT models bnb_4bit_quant_type=model_args.bnb_4bit_quant_type, bnb_4bit_use_double_quant=model_args.use_bnb_nested_quant, ) elif model_args.load_in_8bit: quantization_config = BitsAndBytesConfig( load_in_8bit=True, ) else: quantization_config = None return quantization_config def get_tokenizer(model_args: ModelArguments, data_args: DataArguments) -> PreTrainedTokenizer: """Get the tokenizer for the model.""" tokenizer = AutoTokenizer.from_pretrained( model_args.model_name_or_path, revision=model_args.model_revision, ) if tokenizer.pad_token_id is None: tokenizer.pad_token_id = tokenizer.eos_token_id if data_args.truncation_side is not None: tokenizer.truncation_side = data_args.truncation_side # Set reasonable default for models without max length if tokenizer.model_max_length > 100_000: tokenizer.model_max_length = 2048 if data_args.chat_template is not None: tokenizer.chat_template = data_args.chat_template elif tokenizer.chat_template is None: tokenizer.chat_template = DEFAULT_CHAT_TEMPLATE return tokenizer def get_peft_config(model_args: ModelArguments) -> PeftConfig | None: if model_args.use_peft is False: return None peft_config = LoraConfig( r=model_args.lora_r, lora_alpha=model_args.lora_alpha, lora_dropout=model_args.lora_dropout, bias="none", task_type="CAUSAL_LM", target_modules=model_args.lora_target_modules, modules_to_save=model_args.lora_modules_to_save, ) return peft_config def is_adapter_model(model_name_or_path: str, revision: str = "main") -> bool: repo_files = list_repo_files(model_name_or_path, revision=revision) return "adapter_model.safetensors" in repo_files or "adapter_model.bin" in repo_files