Spaces:
Running
Running
initial commit
Browse files- AUTHORS.rst +13 -0
- README.md +16 -6
- app.py +570 -0
- components/callbacks.py +4 -0
- components/data_module.py +81 -0
- config.py +3 -0
- config/config.yaml +0 -0
- data/.gitkeep +0 -0
- docker-compose.yml +23 -0
- models/__init__.py +0 -0
- models/base_model/classification.py +63 -0
- models/base_model/gan.py +0 -0
- models/base_model/regression.py +55 -0
- models/metrics/classification.py +44 -0
- models/metrics/regression.py +28 -0
- models/model_lit.py +50 -0
- models/modules/sample_torch_module.py +12 -0
- requirements.txt +9 -0
- tests/test_resource.py +4 -0
- utils/.gitkeep +0 -0
AUTHORS.rst
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
=======
|
2 |
+
Credits
|
3 |
+
=======
|
4 |
+
|
5 |
+
Development Lead
|
6 |
+
----------------
|
7 |
+
|
8 |
+
* Full name of the author <Email of the author>
|
9 |
+
|
10 |
+
Contributors
|
11 |
+
------------
|
12 |
+
|
13 |
+
None yet. Why not be the first?
|
README.md
CHANGED
@@ -1,12 +1,22 @@
|
|
1 |
---
|
2 |
-
title: Table
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: streamlit
|
7 |
-
sdk_version: 1.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
---
|
|
|
11 |
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
title: Table Extraction
|
3 |
+
emoji: 🚀
|
4 |
+
colorFrom: indigo
|
5 |
+
colorTo: purple
|
6 |
sdk: streamlit
|
7 |
+
sdk_version: 1.21.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
---
|
11 |
+
# huggingface-space
|
12 |
|
13 |
+
Imported from https://huggingface.co/spaces/jurgendn/table-extraction with some adjustment.
|
14 |
+
|
15 |
+
|
16 |
+
Current pipeline:
|
17 |
+
|
18 |
+
Table detection: https://huggingface.co/microsoft/table-transformer-detection
|
19 |
+
|
20 |
+
Table recognition: https://huggingface.co/microsoft/table-transformer-structure-recognition
|
21 |
+
|
22 |
+
OCR: https://github.com/pbcquoc/vietocr
|
app.py
ADDED
@@ -0,0 +1,570 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import asyncio
|
2 |
+
import string
|
3 |
+
from collections import Counter
|
4 |
+
from itertools import count, tee
|
5 |
+
|
6 |
+
import cv2
|
7 |
+
import matplotlib.pyplot as plt
|
8 |
+
import numpy as np
|
9 |
+
import pandas as pd
|
10 |
+
import streamlit as st
|
11 |
+
import torch
|
12 |
+
from PIL import Image
|
13 |
+
from transformers import DetrImageProcessor, TableTransformerForObjectDetection
|
14 |
+
from vietocr.tool.config import Cfg
|
15 |
+
from vietocr.tool.predictor import Predictor
|
16 |
+
|
17 |
+
st.set_option('deprecation.showPyplotGlobalUse', False)
|
18 |
+
st.set_page_config(layout='wide')
|
19 |
+
st.title("Table Detection and Table Structure Recognition")
|
20 |
+
st.write(
|
21 |
+
"Implemented by MSFT team: https://github.com/microsoft/table-transformer")
|
22 |
+
|
23 |
+
# config = Cfg.load_config_from_name('vgg_transformer')
|
24 |
+
config = Cfg.load_config_from_name('vgg_seq2seq')
|
25 |
+
config['cnn']['pretrained'] = False
|
26 |
+
config['device'] = 'cpu'
|
27 |
+
config['predictor']['beamsearch'] = False
|
28 |
+
detector = Predictor(config)
|
29 |
+
|
30 |
+
table_detection_model = TableTransformerForObjectDetection.from_pretrained(
|
31 |
+
"microsoft/table-transformer-detection")
|
32 |
+
|
33 |
+
table_recognition_model = TableTransformerForObjectDetection.from_pretrained(
|
34 |
+
"microsoft/table-transformer-structure-recognition")
|
35 |
+
|
36 |
+
|
37 |
+
def PIL_to_cv(pil_img):
|
38 |
+
return cv2.cvtColor(np.array(pil_img), cv2.COLOR_RGB2BGR)
|
39 |
+
|
40 |
+
|
41 |
+
def cv_to_PIL(cv_img):
|
42 |
+
return Image.fromarray(cv2.cvtColor(cv_img, cv2.COLOR_BGR2RGB))
|
43 |
+
|
44 |
+
|
45 |
+
async def pytess(cell_pil_img, threshold: float = 0.5):
|
46 |
+
text, prob = detector.predict(cell_pil_img, return_prob=True)
|
47 |
+
if prob < threshold:
|
48 |
+
return ""
|
49 |
+
return text.strip()
|
50 |
+
|
51 |
+
|
52 |
+
def sharpen_image(pil_img):
|
53 |
+
|
54 |
+
img = PIL_to_cv(pil_img)
|
55 |
+
sharpen_kernel = np.array([[-1, -1, -1], [-1, 9, -1], [-1, -1, -1]])
|
56 |
+
|
57 |
+
sharpen = cv2.filter2D(img, -1, sharpen_kernel)
|
58 |
+
pil_img = cv_to_PIL(sharpen)
|
59 |
+
return pil_img
|
60 |
+
|
61 |
+
|
62 |
+
def uniquify(seq, suffs=count(1)):
|
63 |
+
"""Make all the items unique by adding a suffix (1, 2, etc).
|
64 |
+
Credit: https://stackoverflow.com/questions/30650474/python-rename-duplicates-in-list-with-progressive-numbers-without-sorting-list
|
65 |
+
`seq` is mutable sequence of strings.
|
66 |
+
`suffs` is an optional alternative suffix iterable.
|
67 |
+
"""
|
68 |
+
not_unique = [k for k, v in Counter(seq).items() if v > 1]
|
69 |
+
|
70 |
+
suff_gens = dict(zip(not_unique, tee(suffs, len(not_unique))))
|
71 |
+
for idx, s in enumerate(seq):
|
72 |
+
try:
|
73 |
+
suffix = str(next(suff_gens[s]))
|
74 |
+
except KeyError:
|
75 |
+
continue
|
76 |
+
else:
|
77 |
+
seq[idx] += suffix
|
78 |
+
|
79 |
+
return seq
|
80 |
+
|
81 |
+
|
82 |
+
def binarizeBlur_image(pil_img):
|
83 |
+
image = PIL_to_cv(pil_img)
|
84 |
+
thresh = cv2.threshold(image, 150, 255, cv2.THRESH_BINARY_INV)[1]
|
85 |
+
|
86 |
+
result = cv2.GaussianBlur(thresh, (5, 5), 0)
|
87 |
+
result = 255 - result
|
88 |
+
return cv_to_PIL(result)
|
89 |
+
|
90 |
+
|
91 |
+
def td_postprocess(pil_img):
|
92 |
+
'''
|
93 |
+
Removes gray background from tables
|
94 |
+
'''
|
95 |
+
img = PIL_to_cv(pil_img)
|
96 |
+
|
97 |
+
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
|
98 |
+
mask = cv2.inRange(hsv, (0, 0, 100),
|
99 |
+
(255, 5, 255)) # (0, 0, 100), (255, 5, 255)
|
100 |
+
nzmask = cv2.inRange(hsv, (0, 0, 5),
|
101 |
+
(255, 255, 255)) # (0, 0, 5), (255, 255, 255))
|
102 |
+
nzmask = cv2.erode(nzmask, np.ones((3, 3))) # (3,3)
|
103 |
+
mask = mask & nzmask
|
104 |
+
|
105 |
+
new_img = img.copy()
|
106 |
+
new_img[np.where(mask)] = 255
|
107 |
+
|
108 |
+
return cv_to_PIL(new_img)
|
109 |
+
|
110 |
+
|
111 |
+
# def super_res(pil_img):
|
112 |
+
# # requires opencv-contrib-python installed without the opencv-python
|
113 |
+
# sr = dnn_superres.DnnSuperResImpl_create()
|
114 |
+
# image = PIL_to_cv(pil_img)
|
115 |
+
# model_path = "./LapSRN_x8.pb"
|
116 |
+
# model_name = model_path.split('/')[1].split('_')[0].lower()
|
117 |
+
# model_scale = int(model_path.split('/')[1].split('_')[1].split('.')[0][1])
|
118 |
+
|
119 |
+
# sr.readModel(model_path)
|
120 |
+
# sr.setModel(model_name, model_scale)
|
121 |
+
# final_img = sr.upsample(image)
|
122 |
+
# final_img = cv_to_PIL(final_img)
|
123 |
+
|
124 |
+
# return final_img
|
125 |
+
|
126 |
+
|
127 |
+
def table_detector(image, THRESHOLD_PROBA):
|
128 |
+
'''
|
129 |
+
Table detection using DEtect-object TRansformer pre-trained on 1 million tables
|
130 |
+
|
131 |
+
'''
|
132 |
+
|
133 |
+
feature_extractor = DetrImageProcessor(do_resize=True,
|
134 |
+
size=800,
|
135 |
+
max_size=800)
|
136 |
+
encoding = feature_extractor(image, return_tensors="pt")
|
137 |
+
|
138 |
+
with torch.no_grad():
|
139 |
+
outputs = table_detection_model(**encoding)
|
140 |
+
|
141 |
+
probas = outputs.logits.softmax(-1)[0, :, :-1]
|
142 |
+
keep = probas.max(-1).values > THRESHOLD_PROBA
|
143 |
+
|
144 |
+
target_sizes = torch.tensor(image.size[::-1]).unsqueeze(0)
|
145 |
+
postprocessed_outputs = feature_extractor.post_process(
|
146 |
+
outputs, target_sizes)
|
147 |
+
bboxes_scaled = postprocessed_outputs[0]['boxes'][keep]
|
148 |
+
|
149 |
+
return (probas[keep], bboxes_scaled)
|
150 |
+
|
151 |
+
|
152 |
+
def table_struct_recog(image, THRESHOLD_PROBA):
|
153 |
+
'''
|
154 |
+
Table structure recognition using DEtect-object TRansformer pre-trained on 1 million tables
|
155 |
+
'''
|
156 |
+
|
157 |
+
feature_extractor = DetrImageProcessor(do_resize=True,
|
158 |
+
size=1000,
|
159 |
+
max_size=1000)
|
160 |
+
encoding = feature_extractor(image, return_tensors="pt")
|
161 |
+
|
162 |
+
with torch.no_grad():
|
163 |
+
outputs = table_recognition_model(**encoding)
|
164 |
+
|
165 |
+
probas = outputs.logits.softmax(-1)[0, :, :-1]
|
166 |
+
keep = probas.max(-1).values > THRESHOLD_PROBA
|
167 |
+
|
168 |
+
target_sizes = torch.tensor(image.size[::-1]).unsqueeze(0)
|
169 |
+
postprocessed_outputs = feature_extractor.post_process(
|
170 |
+
outputs, target_sizes)
|
171 |
+
bboxes_scaled = postprocessed_outputs[0]['boxes'][keep]
|
172 |
+
|
173 |
+
return (probas[keep], bboxes_scaled)
|
174 |
+
|
175 |
+
|
176 |
+
class TableExtractionPipeline():
|
177 |
+
|
178 |
+
colors = ["red", "blue", "green", "yellow", "orange", "violet"]
|
179 |
+
|
180 |
+
# colors = ["red", "blue", "green", "red", "red", "red"]
|
181 |
+
|
182 |
+
def add_padding(self,
|
183 |
+
pil_img,
|
184 |
+
top,
|
185 |
+
right,
|
186 |
+
bottom,
|
187 |
+
left,
|
188 |
+
color=(255, 255, 255)):
|
189 |
+
'''
|
190 |
+
Image padding as part of TSR pre-processing to prevent missing table edges
|
191 |
+
'''
|
192 |
+
width, height = pil_img.size
|
193 |
+
new_width = width + right + left
|
194 |
+
new_height = height + top + bottom
|
195 |
+
result = Image.new(pil_img.mode, (new_width, new_height), color)
|
196 |
+
result.paste(pil_img, (left, top))
|
197 |
+
return result
|
198 |
+
|
199 |
+
def plot_results_detection(self, c1, model, pil_img, prob, boxes,
|
200 |
+
delta_xmin, delta_ymin, delta_xmax, delta_ymax):
|
201 |
+
'''
|
202 |
+
crop_tables and plot_results_detection must have same co-ord shifts because 1 only plots the other one updates co-ordinates
|
203 |
+
'''
|
204 |
+
# st.write('img_obj')
|
205 |
+
# st.write(pil_img)
|
206 |
+
plt.imshow(pil_img)
|
207 |
+
ax = plt.gca()
|
208 |
+
|
209 |
+
for p, (xmin, ymin, xmax, ymax) in zip(prob, boxes.tolist()):
|
210 |
+
cl = p.argmax()
|
211 |
+
xmin, ymin, xmax, ymax = xmin - delta_xmin, ymin - delta_ymin, xmax + delta_xmax, ymax + delta_ymax
|
212 |
+
ax.add_patch(
|
213 |
+
plt.Rectangle((xmin, ymin),
|
214 |
+
xmax - xmin,
|
215 |
+
ymax - ymin,
|
216 |
+
fill=False,
|
217 |
+
color='red',
|
218 |
+
linewidth=3))
|
219 |
+
text = f'{model.config.id2label[cl.item()]}: {p[cl]:0.2f}'
|
220 |
+
ax.text(xmin - 20,
|
221 |
+
ymin - 50,
|
222 |
+
text,
|
223 |
+
fontsize=10,
|
224 |
+
bbox=dict(facecolor='yellow', alpha=0.5))
|
225 |
+
plt.axis('off')
|
226 |
+
c1.pyplot()
|
227 |
+
|
228 |
+
def crop_tables(self, pil_img, prob, boxes, delta_xmin, delta_ymin,
|
229 |
+
delta_xmax, delta_ymax):
|
230 |
+
'''
|
231 |
+
crop_tables and plot_results_detection must have same co-ord shifts because 1 only plots the other one updates co-ordinates
|
232 |
+
'''
|
233 |
+
cropped_img_list = []
|
234 |
+
|
235 |
+
for p, (xmin, ymin, xmax, ymax) in zip(prob, boxes.tolist()):
|
236 |
+
|
237 |
+
xmin, ymin, xmax, ymax = xmin - delta_xmin, ymin - delta_ymin, xmax + delta_xmax, ymax + delta_ymax
|
238 |
+
cropped_img = pil_img.crop((xmin, ymin, xmax, ymax))
|
239 |
+
cropped_img_list.append(cropped_img)
|
240 |
+
|
241 |
+
return cropped_img_list
|
242 |
+
|
243 |
+
def generate_structure(self, c2, model, pil_img, prob, boxes,
|
244 |
+
expand_rowcol_bbox_top, expand_rowcol_bbox_bottom):
|
245 |
+
'''
|
246 |
+
Co-ordinates are adjusted here by 3 'pixels'
|
247 |
+
To plot table pillow image and the TSR bounding boxes on the table
|
248 |
+
'''
|
249 |
+
# st.write('img_obj')
|
250 |
+
# st.write(pil_img)
|
251 |
+
plt.figure(figsize=(32, 20))
|
252 |
+
plt.imshow(pil_img)
|
253 |
+
ax = plt.gca()
|
254 |
+
rows = {}
|
255 |
+
cols = {}
|
256 |
+
idx = 0
|
257 |
+
|
258 |
+
for p, (xmin, ymin, xmax, ymax) in zip(prob, boxes.tolist()):
|
259 |
+
|
260 |
+
xmin, ymin, xmax, ymax = xmin, ymin, xmax, ymax
|
261 |
+
cl = p.argmax()
|
262 |
+
class_text = model.config.id2label[cl.item()]
|
263 |
+
text = f'{class_text}: {p[cl]:0.2f}'
|
264 |
+
# or (class_text == 'table column')
|
265 |
+
if (class_text
|
266 |
+
== 'table row') or (class_text
|
267 |
+
== 'table projected row header') or (
|
268 |
+
class_text == 'table column'):
|
269 |
+
ax.add_patch(
|
270 |
+
plt.Rectangle((xmin, ymin),
|
271 |
+
xmax - xmin,
|
272 |
+
ymax - ymin,
|
273 |
+
fill=False,
|
274 |
+
color=self.colors[cl.item()],
|
275 |
+
linewidth=2))
|
276 |
+
ax.text(xmin - 10,
|
277 |
+
ymin - 10,
|
278 |
+
text,
|
279 |
+
fontsize=5,
|
280 |
+
bbox=dict(facecolor='yellow', alpha=0.5))
|
281 |
+
|
282 |
+
if class_text == 'table row':
|
283 |
+
rows['table row.' +
|
284 |
+
str(idx)] = (xmin, ymin - expand_rowcol_bbox_top, xmax,
|
285 |
+
ymax + expand_rowcol_bbox_bottom)
|
286 |
+
if class_text == 'table column':
|
287 |
+
cols['table column.' +
|
288 |
+
str(idx)] = (xmin, ymin - expand_rowcol_bbox_top, xmax,
|
289 |
+
ymax + expand_rowcol_bbox_bottom)
|
290 |
+
|
291 |
+
idx += 1
|
292 |
+
|
293 |
+
plt.axis('on')
|
294 |
+
c2.pyplot()
|
295 |
+
return rows, cols
|
296 |
+
|
297 |
+
def sort_table_featuresv2(self, rows: dict, cols: dict):
|
298 |
+
# Sometimes the header and first row overlap, and we need the header bbox not to have first row's bbox inside the headers bbox
|
299 |
+
rows_ = {
|
300 |
+
table_feature: (xmin, ymin, xmax, ymax)
|
301 |
+
for table_feature, (
|
302 |
+
xmin, ymin, xmax,
|
303 |
+
ymax) in sorted(rows.items(), key=lambda tup: tup[1][1])
|
304 |
+
}
|
305 |
+
cols_ = {
|
306 |
+
table_feature: (xmin, ymin, xmax, ymax)
|
307 |
+
for table_feature, (
|
308 |
+
xmin, ymin, xmax,
|
309 |
+
ymax) in sorted(cols.items(), key=lambda tup: tup[1][0])
|
310 |
+
}
|
311 |
+
|
312 |
+
return rows_, cols_
|
313 |
+
|
314 |
+
def individual_table_featuresv2(self, pil_img, rows: dict, cols: dict):
|
315 |
+
|
316 |
+
for k, v in rows.items():
|
317 |
+
xmin, ymin, xmax, ymax = v
|
318 |
+
cropped_img = pil_img.crop((xmin, ymin, xmax, ymax))
|
319 |
+
rows[k] = xmin, ymin, xmax, ymax, cropped_img
|
320 |
+
|
321 |
+
for k, v in cols.items():
|
322 |
+
xmin, ymin, xmax, ymax = v
|
323 |
+
cropped_img = pil_img.crop((xmin, ymin, xmax, ymax))
|
324 |
+
cols[k] = xmin, ymin, xmax, ymax, cropped_img
|
325 |
+
|
326 |
+
return rows, cols
|
327 |
+
|
328 |
+
def object_to_cellsv2(self, master_row: dict, cols: dict,
|
329 |
+
expand_rowcol_bbox_top, expand_rowcol_bbox_bottom,
|
330 |
+
padd_left):
|
331 |
+
'''Removes redundant bbox for rows&columns and divides each row into cells from columns
|
332 |
+
Args:
|
333 |
+
|
334 |
+
Returns:
|
335 |
+
|
336 |
+
|
337 |
+
'''
|
338 |
+
cells_img = {}
|
339 |
+
header_idx = 0
|
340 |
+
row_idx = 0
|
341 |
+
previous_xmax_col = 0
|
342 |
+
new_cols = {}
|
343 |
+
new_master_row = {}
|
344 |
+
previous_ymin_row = 0
|
345 |
+
new_cols = cols
|
346 |
+
new_master_row = master_row
|
347 |
+
## Below 2 for loops remove redundant bounding boxes ###
|
348 |
+
# for k_col, v_col in cols.items():
|
349 |
+
# xmin_col, _, xmax_col, _, col_img = v_col
|
350 |
+
# if (np.isclose(previous_xmax_col, xmax_col, atol=5)) or (xmin_col >= xmax_col):
|
351 |
+
# print('Found a column with double bbox')
|
352 |
+
# continue
|
353 |
+
# previous_xmax_col = xmax_col
|
354 |
+
# new_cols[k_col] = v_col
|
355 |
+
|
356 |
+
# for k_row, v_row in master_row.items():
|
357 |
+
# _, ymin_row, _, ymax_row, row_img = v_row
|
358 |
+
# if (np.isclose(previous_ymin_row, ymin_row, atol=5)) or (ymin_row >= ymax_row):
|
359 |
+
# print('Found a row with double bbox')
|
360 |
+
# continue
|
361 |
+
# previous_ymin_row = ymin_row
|
362 |
+
# new_master_row[k_row] = v_row
|
363 |
+
######################################################
|
364 |
+
for k_row, v_row in new_master_row.items():
|
365 |
+
|
366 |
+
_, _, _, _, row_img = v_row
|
367 |
+
xmax, ymax = row_img.size
|
368 |
+
xa, ya, xb, yb = 0, 0, 0, ymax
|
369 |
+
row_img_list = []
|
370 |
+
# plt.imshow(row_img)
|
371 |
+
# st.pyplot()
|
372 |
+
for idx, kv in enumerate(new_cols.items()):
|
373 |
+
k_col, v_col = kv
|
374 |
+
xmin_col, _, xmax_col, _, col_img = v_col
|
375 |
+
xmin_col, xmax_col = xmin_col - padd_left - 10, xmax_col - padd_left
|
376 |
+
xa = xmin_col
|
377 |
+
xb = xmax_col
|
378 |
+
if idx == 0:
|
379 |
+
xa = 0
|
380 |
+
if idx == len(new_cols) - 1:
|
381 |
+
xb = xmax
|
382 |
+
xa, ya, xb, yb = xa, ya, xb, yb
|
383 |
+
|
384 |
+
row_img_cropped = row_img.crop((xa, ya, xb, yb))
|
385 |
+
row_img_list.append(row_img_cropped)
|
386 |
+
|
387 |
+
cells_img[k_row + '.' + str(row_idx)] = row_img_list
|
388 |
+
row_idx += 1
|
389 |
+
|
390 |
+
return cells_img, len(new_cols), len(new_master_row) - 1
|
391 |
+
|
392 |
+
def clean_dataframe(self, df):
|
393 |
+
'''
|
394 |
+
Remove irrelevant symbols that appear with tesseractOCR
|
395 |
+
'''
|
396 |
+
# df.columns = [col.replace('|', '') for col in df.columns]
|
397 |
+
|
398 |
+
for col in df.columns:
|
399 |
+
|
400 |
+
df[col] = df[col].str.replace("'", '', regex=True)
|
401 |
+
df[col] = df[col].str.replace('"', '', regex=True)
|
402 |
+
df[col] = df[col].str.replace(']', '', regex=True)
|
403 |
+
df[col] = df[col].str.replace('[', '', regex=True)
|
404 |
+
df[col] = df[col].str.replace('{', '', regex=True)
|
405 |
+
df[col] = df[col].str.replace('}', '', regex=True)
|
406 |
+
return df
|
407 |
+
|
408 |
+
@st.cache
|
409 |
+
def convert_df(self, df):
|
410 |
+
return df.to_csv().encode('utf-8')
|
411 |
+
|
412 |
+
def create_dataframe(self, c3, cell_ocr_res: list, max_cols: int,
|
413 |
+
max_rows: int):
|
414 |
+
'''Create dataframe using list of cell values of the table, also checks for valid header of dataframe
|
415 |
+
Args:
|
416 |
+
cell_ocr_res: list of strings, each element representing a cell in a table
|
417 |
+
max_cols, max_rows: number of columns and rows
|
418 |
+
Returns:
|
419 |
+
dataframe : final dataframe after all pre-processing
|
420 |
+
'''
|
421 |
+
|
422 |
+
headers = cell_ocr_res[:max_cols]
|
423 |
+
new_headers = uniquify(headers,
|
424 |
+
(f' {x!s}' for x in string.ascii_lowercase))
|
425 |
+
counter = 0
|
426 |
+
|
427 |
+
cells_list = cell_ocr_res[max_cols:]
|
428 |
+
df = pd.DataFrame("", index=range(0, max_rows), columns=new_headers)
|
429 |
+
|
430 |
+
cell_idx = 0
|
431 |
+
for nrows in range(max_rows):
|
432 |
+
for ncols in range(max_cols):
|
433 |
+
df.iat[nrows, ncols] = str(cells_list[cell_idx])
|
434 |
+
cell_idx += 1
|
435 |
+
|
436 |
+
## To check if there are duplicate headers if result of uniquify+col == col
|
437 |
+
## This check removes headers when all headers are empty or if median of header word count is less than 6
|
438 |
+
for x, col in zip(string.ascii_lowercase, new_headers):
|
439 |
+
if f' {x!s}' == col:
|
440 |
+
counter += 1
|
441 |
+
header_char_count = [len(col) for col in new_headers]
|
442 |
+
|
443 |
+
# if (counter == len(new_headers)) or (statistics.median(header_char_count) < 6):
|
444 |
+
# st.write('woooot')
|
445 |
+
# df.columns = uniquify(df.iloc[0], (f' {x!s}' for x in string.ascii_lowercase))
|
446 |
+
# df = df.iloc[1:,:]
|
447 |
+
|
448 |
+
df = self.clean_dataframe(df)
|
449 |
+
|
450 |
+
c3.dataframe(df)
|
451 |
+
csv = self.convert_df(df)
|
452 |
+
c3.download_button("Download table",
|
453 |
+
csv,
|
454 |
+
"file.csv",
|
455 |
+
"text/csv",
|
456 |
+
key='download-csv-' + df.iloc[0, 0])
|
457 |
+
|
458 |
+
return df
|
459 |
+
|
460 |
+
async def start_process(self, image_path: str, TD_THRESHOLD, TSR_THRESHOLD,
|
461 |
+
OCR_THRESHOLD, padd_top, padd_left, padd_bottom,
|
462 |
+
padd_right, delta_xmin, delta_ymin, delta_xmax,
|
463 |
+
delta_ymax, expand_rowcol_bbox_top,
|
464 |
+
expand_rowcol_bbox_bottom):
|
465 |
+
'''
|
466 |
+
Initiates process of generating pandas dataframes from raw pdf-page images
|
467 |
+
|
468 |
+
'''
|
469 |
+
image = Image.open(image_path).convert("RGB")
|
470 |
+
probas, bboxes_scaled = table_detector(image,
|
471 |
+
THRESHOLD_PROBA=TD_THRESHOLD)
|
472 |
+
|
473 |
+
if bboxes_scaled.nelement() == 0:
|
474 |
+
st.write('No table found in the pdf-page image')
|
475 |
+
return ''
|
476 |
+
|
477 |
+
# try:
|
478 |
+
# st.write('Document: '+image_path.split('/')[-1])
|
479 |
+
c1, c2, c3 = st.columns((1, 1, 1))
|
480 |
+
|
481 |
+
self.plot_results_detection(c1, table_detection_model, image, probas,
|
482 |
+
bboxes_scaled, delta_xmin, delta_ymin,
|
483 |
+
delta_xmax, delta_ymax)
|
484 |
+
cropped_img_list = self.crop_tables(image, probas, bboxes_scaled,
|
485 |
+
delta_xmin, delta_ymin, delta_xmax,
|
486 |
+
delta_ymax)
|
487 |
+
|
488 |
+
for idx, unpadded_table in enumerate(cropped_img_list):
|
489 |
+
|
490 |
+
table = self.add_padding(unpadded_table, padd_top, padd_right,
|
491 |
+
padd_bottom, padd_left)
|
492 |
+
# table = super_res(table)
|
493 |
+
# table = binarizeBlur_image(table)
|
494 |
+
# table = sharpen_image(table) # Test sharpen image next
|
495 |
+
# table = td_postprocess(table)
|
496 |
+
|
497 |
+
# table.save("result"+str(idx)+".png")
|
498 |
+
|
499 |
+
probas, bboxes_scaled = table_struct_recog(
|
500 |
+
table, THRESHOLD_PROBA=TSR_THRESHOLD)
|
501 |
+
rows, cols = self.generate_structure(c2, table_recognition_model,
|
502 |
+
table, probas, bboxes_scaled,
|
503 |
+
expand_rowcol_bbox_top,
|
504 |
+
expand_rowcol_bbox_bottom)
|
505 |
+
# st.write(len(rows), len(cols))
|
506 |
+
rows, cols = self.sort_table_featuresv2(rows, cols)
|
507 |
+
master_row, cols = self.individual_table_featuresv2(
|
508 |
+
table, rows, cols)
|
509 |
+
|
510 |
+
cells_img, max_cols, max_rows = self.object_to_cellsv2(
|
511 |
+
master_row, cols, expand_rowcol_bbox_top,
|
512 |
+
expand_rowcol_bbox_bottom, padd_left)
|
513 |
+
|
514 |
+
sequential_cell_img_list = []
|
515 |
+
for k, img_list in cells_img.items():
|
516 |
+
for img in img_list:
|
517 |
+
# img = super_res(img)
|
518 |
+
# img = sharpen_image(img) # Test sharpen image next
|
519 |
+
# img = binarizeBlur_image(img)
|
520 |
+
# img = self.add_padding(img, 10,10,10,10)
|
521 |
+
# plt.imshow(img)
|
522 |
+
# c3.pyplot()
|
523 |
+
sequential_cell_img_list.append(
|
524 |
+
pytess(cell_pil_img=img, threshold=OCR_THRESHOLD))
|
525 |
+
|
526 |
+
cell_ocr_res = await asyncio.gather(*sequential_cell_img_list)
|
527 |
+
|
528 |
+
self.create_dataframe(c3, cell_ocr_res, max_cols, max_rows)
|
529 |
+
st.write(
|
530 |
+
'Errors in OCR is due to either quality of the image or performance of the OCR'
|
531 |
+
)
|
532 |
+
# except:
|
533 |
+
# st.write('Either incorrectly identified table or no table, to debug remove try/except')
|
534 |
+
# break
|
535 |
+
# break
|
536 |
+
|
537 |
+
|
538 |
+
if __name__ == "__main__":
|
539 |
+
|
540 |
+
img_name = st.file_uploader("Upload an image with table(s)")
|
541 |
+
st1, st2, st3 = st.columns((1, 1, 1))
|
542 |
+
TD_th = st1.slider('Table detection threshold', 0.0, 1.0, 0.8)
|
543 |
+
TSR_th = st2.slider('Table structure recognition threshold', 0.0, 1.0, 0.7)
|
544 |
+
OCR_th = st3.slider("Text Probs Threshold", 0.0, 1.0, 0.5)
|
545 |
+
|
546 |
+
st1, st2, st3, st4 = st.columns((1, 1, 1, 1))
|
547 |
+
|
548 |
+
padd_top = st1.slider('Padding top', 0, 200, 90)
|
549 |
+
padd_left = st2.slider('Padding left', 0, 200, 40)
|
550 |
+
padd_right = st3.slider('Padding right', 0, 200, 40)
|
551 |
+
padd_bottom = st4.slider('Padding bottom', 0, 200, 90)
|
552 |
+
|
553 |
+
te = TableExtractionPipeline()
|
554 |
+
# for img in image_list:
|
555 |
+
if img_name is not None:
|
556 |
+
asyncio.run(
|
557 |
+
te.start_process(img_name,
|
558 |
+
TD_THRESHOLD=TD_th,
|
559 |
+
TSR_THRESHOLD=TSR_th,
|
560 |
+
OCR_THRESHOLD=OCR_th,
|
561 |
+
padd_top=padd_top,
|
562 |
+
padd_left=padd_left,
|
563 |
+
padd_bottom=padd_bottom,
|
564 |
+
padd_right=padd_right,
|
565 |
+
delta_xmin=10, # add offset to the left of the table
|
566 |
+
delta_ymin=3, # add offset to the bottom of the table
|
567 |
+
delta_xmax=10, # add offset to the right of the table
|
568 |
+
delta_ymax=3, # add offset to the top of the table
|
569 |
+
expand_rowcol_bbox_top=0,
|
570 |
+
expand_rowcol_bbox_bottom=0))
|
components/callbacks.py
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Define callbacks here
|
2 |
+
from pytorch_lightning.callbacks import EarlyStopping
|
3 |
+
|
4 |
+
early_stopping = EarlyStopping(monitor="loss", min_delta=0, patience=3)
|
components/data_module.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Callable, List, Optional, Union
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from pytorch_lightning import LightningDataModule
|
5 |
+
from torch.utils.data import DataLoader, Dataset
|
6 |
+
|
7 |
+
|
8 |
+
class SampleDataset(Dataset):
|
9 |
+
|
10 |
+
def __init__(self,
|
11 |
+
x: Union[List, torch.Tensor],
|
12 |
+
y: Union[List, torch.Tensor],
|
13 |
+
transforms: Optional[Callable] = None) -> None:
|
14 |
+
super(SampleDataset, self).__init__()
|
15 |
+
self.x = x
|
16 |
+
self.y = y
|
17 |
+
|
18 |
+
if transforms is None:
|
19 |
+
# Replace None with some default transforms
|
20 |
+
# If image, could be an Resize and ToTensor
|
21 |
+
self.transforms = lambda x: x
|
22 |
+
else:
|
23 |
+
self.transforms = transforms
|
24 |
+
|
25 |
+
def __len__(self):
|
26 |
+
return len(self.x)
|
27 |
+
|
28 |
+
def __getitem__(self, index: int):
|
29 |
+
x = self.x[index]
|
30 |
+
y = self.y[index]
|
31 |
+
|
32 |
+
x = self.transforms(x)
|
33 |
+
return x, y
|
34 |
+
|
35 |
+
|
36 |
+
class SampleDataModule(LightningDataModule):
|
37 |
+
|
38 |
+
def __init__(self,
|
39 |
+
x: Union[List, torch.Tensor],
|
40 |
+
y: Union[List, torch.Tensor],
|
41 |
+
transforms: Optional[Callable] = None,
|
42 |
+
val_ratio: float = 0,
|
43 |
+
batch_size: int = 32) -> None:
|
44 |
+
super(SampleDataModule, self).__init__()
|
45 |
+
assert 0 <= val_ratio < 1
|
46 |
+
assert isinstance(batch_size, int)
|
47 |
+
self.x = x
|
48 |
+
self.y = y
|
49 |
+
|
50 |
+
self.transforms = transforms
|
51 |
+
self.val_ratio = val_ratio
|
52 |
+
self.batch_size = batch_size
|
53 |
+
|
54 |
+
self.setup()
|
55 |
+
self.prepare_data()
|
56 |
+
|
57 |
+
def setup(self, stage: Optional[str] = None) -> None:
|
58 |
+
pass
|
59 |
+
|
60 |
+
def prepare_data(self) -> None:
|
61 |
+
n_samples: int = len(self.x)
|
62 |
+
train_size: int = n_samples - int(n_samples * self.val_ratio)
|
63 |
+
|
64 |
+
self.train_dataset = SampleDataset(x=self.x[:train_size],
|
65 |
+
y=self.y[:train_size],
|
66 |
+
transforms=self.transforms)
|
67 |
+
if train_size < n_samples:
|
68 |
+
self.val_dataset = SampleDataset(x=self.x[train_size:],
|
69 |
+
y=self.y[train_size:],
|
70 |
+
transforms=self.transforms)
|
71 |
+
else:
|
72 |
+
self.val_dataset = SampleDataset(x=self.x[-self.batch_size:],
|
73 |
+
y=self.y[-self.batch_size:],
|
74 |
+
transforms=self.transforms)
|
75 |
+
|
76 |
+
def train_dataloader(self) -> DataLoader:
|
77 |
+
return DataLoader(dataset=self.train_dataset,
|
78 |
+
batch_size=self.batch_size)
|
79 |
+
|
80 |
+
def val_dataloader(self) -> DataLoader:
|
81 |
+
return DataLoader(dataset=self.val_dataset, batch_size=self.batch_size)
|
config.py
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
from dynaconf import Dynaconf
|
2 |
+
|
3 |
+
CFG = Dynaconf(envvar_prefix="DYNACONF", settings_files=["config/config.yaml"])
|
config/config.yaml
ADDED
File without changes
|
data/.gitkeep
ADDED
File without changes
|
docker-compose.yml
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
version: "3.7"
|
2 |
+
|
3 |
+
services:
|
4 |
+
model_name:
|
5 |
+
build:
|
6 |
+
context: .
|
7 |
+
dockerfile: .docker/Dockerfile
|
8 |
+
container_name: model_name
|
9 |
+
ports:
|
10 |
+
- "8996:8996"
|
11 |
+
env_file:
|
12 |
+
- ./.env
|
13 |
+
volumes:
|
14 |
+
- ./data:/home/working/data:ro
|
15 |
+
|
16 |
+
# This part is used to enable GPU support
|
17 |
+
deploy:
|
18 |
+
resources:
|
19 |
+
reservations:
|
20 |
+
devices:
|
21 |
+
- driver: nvidia
|
22 |
+
count: 1
|
23 |
+
capabilities: [ gpu ]
|
models/__init__.py
ADDED
File without changes
|
models/base_model/classification.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from abc import abstractmethod
|
2 |
+
from typing import Any, Dict, List
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from pytorch_lightning import LightningModule
|
6 |
+
from torch import Tensor
|
7 |
+
|
8 |
+
|
9 |
+
class LightningClassification(LightningModule):
|
10 |
+
|
11 |
+
@abstractmethod
|
12 |
+
def __init__(self, *args, **kwargs) -> None:
|
13 |
+
super(LightningClassification, self).__init__(*args, **kwargs)
|
14 |
+
self.train_batch_output: List[Dict] = []
|
15 |
+
self.validation_batch_output: List[Dict] = []
|
16 |
+
self.log_value_list: List[str] = ['loss', 'f1', 'precision', 'recall']
|
17 |
+
|
18 |
+
@abstractmethod
|
19 |
+
def forward(self, *args, **kwargs) -> Any:
|
20 |
+
pass
|
21 |
+
|
22 |
+
@abstractmethod
|
23 |
+
def configure_optimizers(self):
|
24 |
+
pass
|
25 |
+
|
26 |
+
@abstractmethod
|
27 |
+
def loss(self, input: Tensor, target: Tensor, **kwargs) -> Tensor:
|
28 |
+
pass
|
29 |
+
|
30 |
+
@abstractmethod
|
31 |
+
def training_step(self, batch, batch_idx):
|
32 |
+
pass
|
33 |
+
|
34 |
+
def __average(self, key: str, outputs: List[Dict]) -> Tensor:
|
35 |
+
target_arr = torch.Tensor([val[key] for val in outputs]).float()
|
36 |
+
return target_arr.mean()
|
37 |
+
|
38 |
+
@torch.no_grad()
|
39 |
+
def on_train_epoch_start(self) -> None:
|
40 |
+
self.train_batch_output = []
|
41 |
+
|
42 |
+
@torch.no_grad()
|
43 |
+
def on_train_epoch_end(self) -> None:
|
44 |
+
for key in self.log_value_list:
|
45 |
+
val = self.__average(key=key, outputs=self.train_batch_output)
|
46 |
+
log_name = f"training/{key}"
|
47 |
+
self.log(name=log_name, value=val)
|
48 |
+
|
49 |
+
@abstractmethod
|
50 |
+
@torch.no_grad()
|
51 |
+
def validation_step(self, batch, batch_idx):
|
52 |
+
pass
|
53 |
+
|
54 |
+
@torch.no_grad()
|
55 |
+
def on_validation_epoch_start(self) -> None:
|
56 |
+
self.validation_batch_output = []
|
57 |
+
|
58 |
+
@torch.no_grad()
|
59 |
+
def on_validation_epoch_end(self) -> None:
|
60 |
+
for key in self.log_value_list:
|
61 |
+
val = self.__average(key=key, outputs=self.validation_batch_output)
|
62 |
+
log_name = f"val/{key}"
|
63 |
+
self.log(name=log_name, value=val)
|
models/base_model/gan.py
ADDED
File without changes
|
models/base_model/regression.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from abc import abstractmethod
|
2 |
+
from typing import Any, Dict, List
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from pytorch_lightning import LightningModule
|
6 |
+
from torch import Tensor
|
7 |
+
|
8 |
+
|
9 |
+
class LightningRegression(LightningModule):
|
10 |
+
|
11 |
+
@abstractmethod
|
12 |
+
def __init__(self, *args, **kwargs) -> None:
|
13 |
+
super(LightningRegression, self).__init__(*args, **kwargs)
|
14 |
+
self.train_step_output: List[Dict] = []
|
15 |
+
self.validation_step_output: List[Dict] = []
|
16 |
+
self.log_value_list: List[str] = ['loss', 'mse', 'mape']
|
17 |
+
|
18 |
+
@abstractmethod
|
19 |
+
def forward(self, *args, **kwargs) -> Any:
|
20 |
+
pass
|
21 |
+
|
22 |
+
@abstractmethod
|
23 |
+
def configure_optimizers(self):
|
24 |
+
pass
|
25 |
+
|
26 |
+
@abstractmethod
|
27 |
+
def loss(self, input: Tensor, output: Tensor, **kwargs):
|
28 |
+
return 0
|
29 |
+
|
30 |
+
@abstractmethod
|
31 |
+
def training_step(self, batch, batch_idx):
|
32 |
+
pass
|
33 |
+
|
34 |
+
def __average(self, key: str, outputs: List[Dict]) -> Tensor:
|
35 |
+
target_arr = torch.Tensor([val[key] for val in outputs]).float()
|
36 |
+
return target_arr.mean()
|
37 |
+
|
38 |
+
@torch.no_grad()
|
39 |
+
def on_train_epoch_end(self) -> None:
|
40 |
+
for key in self.log_value_list:
|
41 |
+
val = self.__average(key=key, outputs=self.train_step_output)
|
42 |
+
log_name = f"training/{key}"
|
43 |
+
self.log(name=log_name, value=val)
|
44 |
+
|
45 |
+
@torch.no_grad()
|
46 |
+
@abstractmethod
|
47 |
+
def validation_step(self, batch, batch_idx):
|
48 |
+
pass
|
49 |
+
|
50 |
+
@torch.no_grad()
|
51 |
+
def validation_epoch_end(self, outputs):
|
52 |
+
for key in self.log_value_list:
|
53 |
+
val = self.__average(key=key, outputs=self.validation_step_output)
|
54 |
+
log_name = f"training/{key}"
|
55 |
+
self.log(name=log_name, value=val)
|
models/metrics/classification.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from torchmetrics import functional as FM
|
5 |
+
|
6 |
+
|
7 |
+
def classification_metrics(
|
8 |
+
preds: torch.Tensor,
|
9 |
+
target: torch.Tensor,
|
10 |
+
num_classes: int,
|
11 |
+
average: str = 'macro',
|
12 |
+
task: str = 'multiclass') -> Dict[str, torch.Tensor]:
|
13 |
+
"""
|
14 |
+
get_classification_metrics
|
15 |
+
Return some metrics evaluation the classification task
|
16 |
+
|
17 |
+
Parameters
|
18 |
+
----------
|
19 |
+
preds : torch.Tensor
|
20 |
+
logits, probs
|
21 |
+
target : torch.Tensor
|
22 |
+
targets label
|
23 |
+
|
24 |
+
Returns
|
25 |
+
-------
|
26 |
+
Dict[str, torch.Tensor]
|
27 |
+
_description_
|
28 |
+
"""
|
29 |
+
f1 = FM.f1_score(preds=preds,
|
30 |
+
target=target,
|
31 |
+
num_classes=num_classes,
|
32 |
+
task=task,
|
33 |
+
average=average)
|
34 |
+
recall = FM.recall(preds=preds,
|
35 |
+
target=target,
|
36 |
+
num_classes=num_classes,
|
37 |
+
task=task,
|
38 |
+
average=average)
|
39 |
+
precision = FM.precision(preds=preds,
|
40 |
+
target=target,
|
41 |
+
num_classes=num_classes,
|
42 |
+
task=task,
|
43 |
+
average=average)
|
44 |
+
return dict(f1=f1, precision=precision, recall=recall)
|
models/metrics/regression.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from torchmetrics import functional as FM
|
5 |
+
|
6 |
+
|
7 |
+
def regression_metrics(preds: torch.Tensor,
|
8 |
+
target: torch.Tensor) -> Dict[str, torch.Tensor]:
|
9 |
+
"""
|
10 |
+
get_classification_metrics
|
11 |
+
Return some metrics evaluation the classification task
|
12 |
+
|
13 |
+
Parameters
|
14 |
+
----------
|
15 |
+
preds : torch.Tensor
|
16 |
+
logits, probs
|
17 |
+
target : torch.Tensor
|
18 |
+
targets label
|
19 |
+
|
20 |
+
Returns
|
21 |
+
-------
|
22 |
+
Dict[str, torch.Tensor]
|
23 |
+
_description_
|
24 |
+
"""
|
25 |
+
mse: torch.Tensor = FM.mean_squared_error(preds=preds, target=target)
|
26 |
+
mape: torch.Tensor = FM.mean_absolute_percentage_error(preds=preds,
|
27 |
+
target=target)
|
28 |
+
return dict(mse=mse, mape=mape)
|
models/model_lit.py
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from torch import Tensor, nn, optim
|
2 |
+
from torch.nn import functional as F
|
3 |
+
|
4 |
+
from .base_model.classification import LightningClassification
|
5 |
+
from .metrics.classification import classification_metrics
|
6 |
+
from .modules.sample_torch_module import UselessLayer
|
7 |
+
|
8 |
+
|
9 |
+
class UselessClassification(LightningClassification):
|
10 |
+
|
11 |
+
def __init__(self, n_classes: int, lr: float, **kwargs) -> None:
|
12 |
+
super(UselessClassification).__init__()
|
13 |
+
self.save_hyperparameters()
|
14 |
+
self.n_classes = n_classes
|
15 |
+
self.lr = lr
|
16 |
+
self.main = nn.Sequential(UselessLayer(), nn.GELU())
|
17 |
+
|
18 |
+
def forward(self, x: Tensor) -> Tensor:
|
19 |
+
return self.main(x)
|
20 |
+
|
21 |
+
def loss(self, input: Tensor, target: Tensor) -> Tensor:
|
22 |
+
return F.mse_loss(input=input, target=target)
|
23 |
+
|
24 |
+
def configure_optimizers(self):
|
25 |
+
optimizer = optim.Adam(params=self.parameters(), lr=self.lr)
|
26 |
+
return optimizer
|
27 |
+
|
28 |
+
def training_step(self, batch, batch_idx):
|
29 |
+
x, y = batch
|
30 |
+
|
31 |
+
logits = self.forward(x)
|
32 |
+
loss = self.loss(input=x, target=y)
|
33 |
+
metrics = classification_metrics(preds=logits,
|
34 |
+
target=y,
|
35 |
+
num_classes=self.n_classes)
|
36 |
+
|
37 |
+
self.train_batch_output.append({'loss': loss, **metrics})
|
38 |
+
return loss
|
39 |
+
|
40 |
+
def validation_step(self, batch, batch_idx):
|
41 |
+
x, y = batch
|
42 |
+
|
43 |
+
logits = self.forward(x)
|
44 |
+
loss = self.loss(input=x, target=y)
|
45 |
+
metrics = classification_metrics(preds=logits,
|
46 |
+
target=y,
|
47 |
+
num_classes=self.n_classes)
|
48 |
+
|
49 |
+
self.validation_batch_output.append({'loss': loss, **metrics})
|
50 |
+
return loss
|
models/modules/sample_torch_module.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from torch import Tensor, nn
|
2 |
+
|
3 |
+
|
4 |
+
class UselessLayer(nn.Module):
|
5 |
+
|
6 |
+
def __init__(self) -> None:
|
7 |
+
super(UselessLayer, self).__init__()
|
8 |
+
self.seq = nn.Identity()
|
9 |
+
|
10 |
+
def forward(self, x: Tensor) -> Tensor:
|
11 |
+
x = self.seq(x)
|
12 |
+
return x
|
requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
timm==0.9.2
|
2 |
+
torch --index-url https://download.pytorch.org/whl/cpu
|
3 |
+
torchvision --index-url https://download.pytorch.org/whl/cpu
|
4 |
+
torchaudio --index-url https://download.pytorch.org/whl/cpu
|
5 |
+
vietocr==0.3.11
|
6 |
+
streamlit==1.21.0
|
7 |
+
pandas
|
8 |
+
transformers==4.29.1
|
9 |
+
Pillow==9.5.0
|
tests/test_resource.py
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
def test_cuda():
|
2 |
+
from torch.cuda import is_available
|
3 |
+
assert is_available()
|
4 |
+
|
utils/.gitkeep
ADDED
File without changes
|