File size: 1,987 Bytes
e482461
970a3e5
 
acbe616
 
e482461
acbe616
 
 
 
970a3e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e482461
d35fc36
e482461
acbe616
e482461
d35fc36
e482461
d35fc36
e482461
 
970a3e5
 
 
 
e482461
 
acbe616
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import streamlit as st
import torch
import re
from transformers import GPT2LMHeadModel, GPT2Tokenizer

# Load the fine-tuned model and tokenizer
model_name = "rohangbs/fine-tuned-gpt2"
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
model = GPT2LMHeadModel.from_pretrained(model_name)

# Ensure the model is on the correct device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(device)

# Function to generate a response
def chat_with_model(input_prompt, max_length=200):
    model.eval()
    
    # Format the input prompt with special tokens
    prompt = f"<|startoftext|>[WP] {input_prompt}\n[RESPONSE]"
    
    # Tokenize and encode the prompt, and send to the device
    generated = torch.tensor(tokenizer.encode(prompt)).unsqueeze(0).to(device)
    
    # Generate a response
    sample_outputs = model.generate(
        generated,
        do_sample=True,
        top_k=50,
        max_length=max_length,
        top_p=0.95,
        num_return_sequences=1,
        pad_token_id=tokenizer.eos_token_id
    )
    
    # Decode the response and clean it up
    response_text = tokenizer.decode(sample_outputs[0], skip_special_tokens=True)
    wp_responses = re.split(r"\[WP\].*?\n|\[RESPONSE\]", response_text)[1:]
    clean_responses = [response.strip() for response in wp_responses if response.strip()]
    
    # Return the first valid response
    return clean_responses[0] if clean_responses else "I couldn't generate a response."

# Streamlit UI
st.title("Chatbot For Company Details")
st.write("A GPT-2 model fine-tuned for Company dataset.")

# User input
prompt = st.text_area("Ask your question:", height=150)

if st.button("Send"):
    if prompt.strip():
        with st.spinner("Generating..."):
            # Generate and display the response
            response = chat_with_model(prompt)
            st.subheader("Generated Response:")
            st.write(response)
    else:
        st.warning("Please enter a prompt.")