import json import re from collections import defaultdict from typing import Dict import streamlit as st import pandas as pd import numpy as np import torch from transformers import AutoTokenizer, AutoModel import umap import plotly.express as px import textwrap st.title('Bible analysis with BERT') @st.cache def load_verses() -> Dict[str, str]: verses = {} count = 0 with open('esv.txt', 'r', encoding='utf8') as f: lines = f.readlines() for line in lines: try: citation, raw_sentence = line.strip().split('\t') verses[citation] = raw_sentence except ValueError: count +=1 print(count) return verses @st.experimental_memo def load_tags(): index = defaultdict(list) with open("esv_tags.txt", encoding='utf8') as f: lines = f.readlines() for line in lines: verse, strongs = line.split("\t", maxsplit=1) tokens = strongs.strip().split("\t") for t in tokens: if "=" in t: words, strongs = t.split("=") words = [(verse, int(x)) for x in words.split("+")] strongs = [x[1:-1] for x in strongs.split("+")] for s in strongs: index[s].extend(words) return index @st.cache def get_strong_defs(): with open("strongs_defs.json", encoding='utf8') as f: return json.load(f) def get_word_idx(sent: str, word: str): l = re.split('([ .,!?:;""()\'-])', sent) l = [x for x in l if x != " " and x != ""] return l.index(word) @st.experimental_memo def get_embedding(sent, word, layers=None): """Get a word vector by first tokenizing the input sentence, getting all token idxs that make up the word of interest, and then `get_hidden_states`.""" layers = [-4, -3, -2, -1] if layers is None else layers tokenizer, model = get_models() encoded = tokenizer.encode_plus(sent, return_tensors="pt") idx = get_word_idx(sent, word) # get all token idxs that belong to the word of interest token_ids_word = np.where(np.array(encoded.word_ids()) == idx) with torch.no_grad(): output = model(**encoded) # Get all hidden states states = output.hidden_states # Stack and sum all requested layers output = torch.stack([states[i] for i in layers]).sum(0).squeeze() # Only select the tokens that constitute the requested word word_tokens_output = output[token_ids_word] return word_tokens_output.mean(dim=0).numpy() verses = load_verses() strongs_tags = load_tags() strongs_defs = get_strong_defs() print(len(strongs_tags)) st.text('Loaded {} verses'.format(len(verses))) st.text('Loaded {} tags'.format(len(strongs_tags))) books = [] for k in verses: book = k[:k.index(" ", 2)] if book not in books: books.append(book) print(books) all_defs = {k: f"{k} - {strongs_defs[k]}" for k in strongs_defs} def format_strong(number): return f"{number} - {strongs_defs[number]}" @st.experimental_singleton def get_models(): tokenizer = AutoTokenizer.from_pretrained('bert-base-cased') model = AutoModel.from_pretrained('bert-base-cased', output_hidden_states=True).eval() return tokenizer, model @st.experimental_memo def get_all_embeddings(greek_words): embeddings = [] for word in greek_words: for number in greek_words[word]: if number in strongs_tags: gw = word for verse, idx in strongs_tags[number]: if verse in verses: text = verses[verse] words = [x for x in re.split('([ \'])', text) if x != " " and x != "" and x != "'"] if len(words) <= idx - 1: continue ew = words[idx-1].strip(",.!?;:()\"'-") print(gw, ew) emb = get_embedding(text, ew) embeddings.append((emb, f"{verse} {text}", gw, book)) return embeddings def get_book_type(idx): if idx < 4: return 'Gospels' if idx == 4: return 'Acts' if idx < 19: return 'Pauline letters' if idx < 26: return 'Short lettters' return 'Revelation' st.markdown(""" This app is a demo of using BERT to analyze the Greek New Testament. It allows you to compare two clusters of Greek words (identified by their Strong's Numbers) and compare the embeddings for them. To use it, select the words you want to use for the first cluster (eg. G0025 and G0026, which are forms of agape), then select the words you want to use for the second cluster (eg. G5368, G5360, G5363, which are forms of phileo) and then hit Submit. """) with st.form("my_form"): option1 = st.multiselect('Select Strongs numbers for first concept', all_defs.keys(), ['0025', '0026'], format_func=format_strong) option2 = st.multiselect('Select Strongs numbers for second concept', all_defs.keys(), ["5368", "5360", "5363", "5362", "5361", "5366", "5377"], format_func=format_strong) # Every form must have a submit button. submitted = st.form_submit_button("Submit") if submitted: with st.spinner('Calculating embeddings...'): embeddings = get_all_embeddings({"concept1": option1, "concept2": option2}) with st.spinner('Reducing dimensionality...'): mapper = umap.UMAP().fit([x[0] for x in embeddings]) ts = mapper.embedding_ x = ts[:, 0] y = ts[:, 1] df = pd.DataFrame( {"x": x, "y": y, "verse": ["
".join(textwrap.wrap(x[1], 80)) for x in embeddings], "greek word": [x[2] for x in embeddings]}) fig = px.scatter(df, x="x", y="y", hover_data=['verse'], color="greek word", ) # fig.write_html("book_love.html") st.plotly_chart(fig)