acr / app2.py
roman
update requirements.txt, add whisper small ukr
62e68d5
import streamlit as st
import whisper
import tempfile
from pydub import AudioSegment
# Define available models
available_models = ["tiny", "base", "small", "medium", "large"]
st.title("Voice Recognition App")
st.write("Upload an audio file and choose a Whisper model to transcribe it to text.")
# Model selection dropdown
model_choice = st.selectbox("Choose a Whisper model", available_models)
# Load the selected Whisper model
st.write(f"Loading {model_choice} model...")
model = whisper.load_model(model_choice)
st.write(f"{model_choice} model loaded successfully.")
# File uploader for audio file
uploaded_file = st.file_uploader("Choose an audio file", type=["wav", "mp3", "m4a"])
if uploaded_file is not None:
# Save the uploaded file temporarily
with tempfile.NamedTemporaryFile(delete=False) as temp_file:
temp_file.write(uploaded_file.read())
temp_file_path = temp_file.name
# Convert audio file to a format supported by Whisper (if necessary)
audio = AudioSegment.from_file(temp_file_path)
temp_wav_path = tempfile.mktemp(suffix=".wav")
audio.export(temp_wav_path, format="wav")
st.audio(uploaded_file, format="audio/wav")
st.write("Transcribing audio...")
# Transcribe audio using Whisper model
result = model.transcribe(temp_wav_path)
st.write("Transcription:")
st.write(result["text"])