santit96
commited on
Commit
β’
93109de
0
Parent(s):
Initialize project and create a first sentiment classifier prototype with streamlit and a pretrained bert model
Browse files- .gitignore +4 -0
- README.md +1 -0
- data/.gitkeep +0 -0
- models/__init__.py +0 -0
- models/models.py +21 -0
- notebooks/classify_sentiment_with_bert.ipynb +0 -0
- requirements.txt +5 -0
- sentiment_analysis.py +46 -0
- sentiment_classificator.py +34 -0
.gitignore
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
__pycache__
|
2 |
+
*.csv
|
3 |
+
.DS_Store
|
4 |
+
*.h5
|
README.md
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
# bert-sentiment-analysis
|
data/.gitkeep
ADDED
File without changes
|
models/__init__.py
ADDED
File without changes
|
models/models.py
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Module to load the project models
|
3 |
+
"""
|
4 |
+
import os
|
5 |
+
import tensorflow_text
|
6 |
+
import tensorflow as tf
|
7 |
+
import tensorflow_hub as hub
|
8 |
+
|
9 |
+
|
10 |
+
CURRENT_DIR = os.path.dirname(os.path.abspath(__file__))
|
11 |
+
|
12 |
+
|
13 |
+
def load_sentiments_model():
|
14 |
+
"""
|
15 |
+
Load pretrained model
|
16 |
+
"""
|
17 |
+
model_path = os.path.join(CURRENT_DIR, "sentiments_bert_model.h5")
|
18 |
+
model = tf.keras.models.load_model(
|
19 |
+
model_path, custom_objects={"KerasLayer": hub.KerasLayer}, compile=False
|
20 |
+
)
|
21 |
+
return model
|
notebooks/classify_sentiment_with_bert.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pandas
|
2 |
+
jupyter
|
3 |
+
numpy
|
4 |
+
tensorflow
|
5 |
+
tensorflow-text
|
sentiment_analysis.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Sentiment analysis streamlit webpage
|
3 |
+
"""
|
4 |
+
import streamlit as st
|
5 |
+
from sentiment_classificator import classify_sentiment
|
6 |
+
|
7 |
+
|
8 |
+
def get_representative_emoji(sentiment: str) -> str:
|
9 |
+
"""
|
10 |
+
From a sentiment return the representative emoji
|
11 |
+
"""
|
12 |
+
if sentiment == 'positive':
|
13 |
+
return "π"
|
14 |
+
elif sentiment == 'negative':
|
15 |
+
return "π"
|
16 |
+
else:
|
17 |
+
return "π"
|
18 |
+
|
19 |
+
|
20 |
+
def main() -> None:
|
21 |
+
"""
|
22 |
+
Build streamlit page for sentiment analysis
|
23 |
+
"""
|
24 |
+
st.title("Sentiment Classification")
|
25 |
+
|
26 |
+
# Initialize session state variables
|
27 |
+
if 'enter_pressed' not in st.session_state:
|
28 |
+
st.session_state.enter_pressed = False
|
29 |
+
|
30 |
+
# Input text box and button
|
31 |
+
input_text = st.text_input("Enter your text here:")
|
32 |
+
button_clicked = st.button("Classify Sentiment")
|
33 |
+
|
34 |
+
if button_clicked or st.session_state.enter_pressed:
|
35 |
+
# Process the input text with the sentiment classifier
|
36 |
+
sentiment = classify_sentiment(input_text)
|
37 |
+
|
38 |
+
# Get the representative emoji
|
39 |
+
emoji = get_representative_emoji(sentiment)
|
40 |
+
|
41 |
+
# Show the response and emoji
|
42 |
+
st.write(f"Sentiment: {sentiment.capitalize()} {emoji}")
|
43 |
+
|
44 |
+
|
45 |
+
if __name__ == "__main__":
|
46 |
+
main()
|
sentiment_classificator.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Module to classify text into positive or negative sentiments
|
3 |
+
"""
|
4 |
+
import sys
|
5 |
+
import tensorflow as tf
|
6 |
+
from models.models import load_sentiments_model
|
7 |
+
|
8 |
+
sentiments_model = load_sentiments_model()
|
9 |
+
MAX_NEG = 0.4
|
10 |
+
MIN_POS = 0.6
|
11 |
+
|
12 |
+
|
13 |
+
def classify_sentiment(input_text: str) -> str:
|
14 |
+
"""
|
15 |
+
Receives a string and classifies it in positive, negative or none
|
16 |
+
"""
|
17 |
+
result = tf.sigmoid(sentiments_model(tf.constant([input_text])))
|
18 |
+
if result < MAX_NEG:
|
19 |
+
return "negative"
|
20 |
+
elif result > MIN_POS:
|
21 |
+
return "positive"
|
22 |
+
else:
|
23 |
+
return "-"
|
24 |
+
|
25 |
+
|
26 |
+
if __name__ == "__main__":
|
27 |
+
if len(sys.argv) < 2:
|
28 |
+
print(
|
29 |
+
f"Usage: python {sys.argv[0]} <text to classify>")
|
30 |
+
sys.exit(1)
|
31 |
+
# Get the input string from command line argument
|
32 |
+
input_text = sys.argv[1]
|
33 |
+
sentiment = classify_sentiment(input_text)
|
34 |
+
print("Sentiment of the sentence: ", sentiment)
|