--- title: Sentiment classifier emoji: 🎭 colorFrom: blue colorTo: red sdk: streamlit sdk_version: 1.25.0 pinned: false app_file: sentiment_analysis.py --- # bert-sentiment-analysis Prototype that classifies text into positive or negative sentiments using a fine tuned bert model ## Installation of dependencies `pip install -r requirements.txt` ## Usage 1. Download the [trained model](https://huggingface.co/rootstrap-org/bert-sentiment-classifier/blob/main/sentiments_bert_model.h5) and move it to the *models* directory 2. Create a `.env` file and set a MODEL_NAME property with the name of the trained model file and optionally a MODEL_REPOSITORY_NAME property with the name of the huggingface repository of the model. 3. Use the tool: * To use it as a **streamlit web app** run: `streamlit run sentiment_analysis.py` It will open a web app on `http://localhost:8501` * To use it from **command line** run `python sentiment_classificator.py ` ## Training 1. Download the [all_sentiment_dataset.csv](https://drive.google.com/file/d/175Ccd3B6kLWMBvr1WAUzQJT4TwgzXF6N/view?usp=sharing) 2. Execute the *classify_sentiment_with_bert* notebook which is in the *notebooks* directory 3. The model should be saved under *models* directory as **sentiments_bert_model.h5**