IDM-VTON
update IDM-VTON Demo
938e515
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
import argparse
import logging
import os
import sys
from timeit import default_timer as timer
from typing import Any, ClassVar, Dict, List
import torch
from fvcore.common.file_io import PathManager
from detectron2.data.catalog import DatasetCatalog
from detectron2.utils.logger import setup_logger
from densepose.data.structures import DensePoseDataRelative
from densepose.utils.dbhelper import EntrySelector
from densepose.utils.logger import verbosity_to_level
from densepose.vis.base import CompoundVisualizer
from densepose.vis.bounding_box import BoundingBoxVisualizer
from densepose.vis.densepose import (
DensePoseDataCoarseSegmentationVisualizer,
DensePoseDataPointsIVisualizer,
DensePoseDataPointsUVisualizer,
DensePoseDataPointsVisualizer,
DensePoseDataPointsVVisualizer,
)
DOC = """Query DB - a tool to print / visualize data from a database
"""
LOGGER_NAME = "query_db"
logger = logging.getLogger(LOGGER_NAME)
_ACTION_REGISTRY: Dict[str, "Action"] = {}
class Action(object):
@classmethod
def add_arguments(cls: type, parser: argparse.ArgumentParser):
parser.add_argument(
"-v",
"--verbosity",
action="count",
help="Verbose mode. Multiple -v options increase the verbosity.",
)
def register_action(cls: type):
"""
Decorator for action classes to automate action registration
"""
global _ACTION_REGISTRY
_ACTION_REGISTRY[cls.COMMAND] = cls
return cls
class EntrywiseAction(Action):
@classmethod
def add_arguments(cls: type, parser: argparse.ArgumentParser):
super(EntrywiseAction, cls).add_arguments(parser)
parser.add_argument(
"dataset", metavar="<dataset>", help="Dataset name (e.g. densepose_coco_2014_train)"
)
parser.add_argument(
"selector",
metavar="<selector>",
help="Dataset entry selector in the form field1[:type]=value1[,"
"field2[:type]=value_min-value_max...] which selects all "
"entries from the dataset that satisfy the constraints",
)
parser.add_argument(
"--max-entries", metavar="N", help="Maximum number of entries to process", type=int
)
@classmethod
def execute(cls: type, args: argparse.Namespace):
dataset = setup_dataset(args.dataset)
entry_selector = EntrySelector.from_string(args.selector)
context = cls.create_context(args)
if args.max_entries is not None:
for _, entry in zip(range(args.max_entries), dataset):
if entry_selector(entry):
cls.execute_on_entry(entry, context)
else:
for entry in dataset:
if entry_selector(entry):
cls.execute_on_entry(entry, context)
@classmethod
def create_context(cls: type, args: argparse.Namespace) -> Dict[str, Any]:
context = {}
return context
@register_action
class PrintAction(EntrywiseAction):
"""
Print action that outputs selected entries to stdout
"""
COMMAND: ClassVar[str] = "print"
@classmethod
def add_parser(cls: type, subparsers: argparse._SubParsersAction):
parser = subparsers.add_parser(cls.COMMAND, help="Output selected entries to stdout. ")
cls.add_arguments(parser)
parser.set_defaults(func=cls.execute)
@classmethod
def add_arguments(cls: type, parser: argparse.ArgumentParser):
super(PrintAction, cls).add_arguments(parser)
@classmethod
def execute_on_entry(cls: type, entry: Dict[str, Any], context: Dict[str, Any]):
import pprint
printer = pprint.PrettyPrinter(indent=2, width=200, compact=True)
printer.pprint(entry)
@register_action
class ShowAction(EntrywiseAction):
"""
Show action that visualizes selected entries on an image
"""
COMMAND: ClassVar[str] = "show"
VISUALIZERS: ClassVar[Dict[str, object]] = {
"dp_segm": DensePoseDataCoarseSegmentationVisualizer(),
"dp_i": DensePoseDataPointsIVisualizer(),
"dp_u": DensePoseDataPointsUVisualizer(),
"dp_v": DensePoseDataPointsVVisualizer(),
"dp_pts": DensePoseDataPointsVisualizer(),
"bbox": BoundingBoxVisualizer(),
}
@classmethod
def add_parser(cls: type, subparsers: argparse._SubParsersAction):
parser = subparsers.add_parser(cls.COMMAND, help="Visualize selected entries")
cls.add_arguments(parser)
parser.set_defaults(func=cls.execute)
@classmethod
def add_arguments(cls: type, parser: argparse.ArgumentParser):
super(ShowAction, cls).add_arguments(parser)
parser.add_argument(
"visualizations",
metavar="<visualizations>",
help="Comma separated list of visualizations, possible values: "
"[{}]".format(",".join(sorted(cls.VISUALIZERS.keys()))),
)
parser.add_argument(
"--output",
metavar="<image_file>",
default="output.png",
help="File name to save output to",
)
@classmethod
def execute_on_entry(cls: type, entry: Dict[str, Any], context: Dict[str, Any]):
import cv2
import numpy as np
image_fpath = PathManager.get_local_path(entry["file_name"])
image = cv2.imread(image_fpath, cv2.IMREAD_GRAYSCALE)
image = np.tile(image[:, :, np.newaxis], [1, 1, 3])
datas = cls._extract_data_for_visualizers_from_entry(context["vis_specs"], entry)
visualizer = context["visualizer"]
image_vis = visualizer.visualize(image, datas)
entry_idx = context["entry_idx"] + 1
out_fname = cls._get_out_fname(entry_idx, context["out_fname"])
cv2.imwrite(out_fname, image_vis)
logger.info(f"Output saved to {out_fname}")
context["entry_idx"] += 1
@classmethod
def _get_out_fname(cls: type, entry_idx: int, fname_base: str):
base, ext = os.path.splitext(fname_base)
return base + ".{0:04d}".format(entry_idx) + ext
@classmethod
def create_context(cls: type, args: argparse.Namespace) -> Dict[str, Any]:
vis_specs = args.visualizations.split(",")
visualizers = []
for vis_spec in vis_specs:
vis = cls.VISUALIZERS[vis_spec]
visualizers.append(vis)
context = {
"vis_specs": vis_specs,
"visualizer": CompoundVisualizer(visualizers),
"out_fname": args.output,
"entry_idx": 0,
}
return context
@classmethod
def _extract_data_for_visualizers_from_entry(
cls: type, vis_specs: List[str], entry: Dict[str, Any]
):
dp_list = []
bbox_list = []
for annotation in entry["annotations"]:
is_valid, _ = DensePoseDataRelative.validate_annotation(annotation)
if not is_valid:
continue
bbox = torch.as_tensor(annotation["bbox"])
bbox_list.append(bbox)
dp_data = DensePoseDataRelative(annotation)
dp_list.append(dp_data)
datas = []
for vis_spec in vis_specs:
datas.append(bbox_list if "bbox" == vis_spec else (bbox_list, dp_list))
return datas
def setup_dataset(dataset_name):
logger.info("Loading dataset {}".format(dataset_name))
start = timer()
dataset = DatasetCatalog.get(dataset_name)
stop = timer()
logger.info("Loaded dataset {} in {:.3f}s".format(dataset_name, stop - start))
return dataset
def create_argument_parser() -> argparse.ArgumentParser:
parser = argparse.ArgumentParser(
description=DOC,
formatter_class=lambda prog: argparse.HelpFormatter(prog, max_help_position=120),
)
parser.set_defaults(func=lambda _: parser.print_help(sys.stdout))
subparsers = parser.add_subparsers(title="Actions")
for _, action in _ACTION_REGISTRY.items():
action.add_parser(subparsers)
return parser
def main():
parser = create_argument_parser()
args = parser.parse_args()
verbosity = args.verbosity if hasattr(args, "verbosity") else None
global logger
logger = setup_logger(name=LOGGER_NAME)
logger.setLevel(verbosity_to_level(verbosity))
args.func(args)
if __name__ == "__main__":
main()