Spaces:
Sleeping
Sleeping
import torch | |
import torch.nn.functional as F | |
from transformers import AutoTokenizer, AutoModel, AutoImageProcessor | |
import gradio as gr | |
import spaces | |
import torch | |
# neuralmind/bert-base-portuguese-cased | |
#ModelName = "neuralmind/bert-base-portuguese-cased" | |
#model = AutoModel.from_pretrained(ModelName) | |
#tokenizer = AutoTokenizer.from_pretrained(ModelName, do_lower_case=False) | |
#processor = AutoImageProcessor.from_pretrained("nomic-ai/nomic-embed-vision-v1.5") | |
#vision_model = AutoModel.from_pretrained("nomic-ai/nomic-embed-vision-v1.5", trust_remote_code=True) | |
tokenizer = AutoTokenizer.from_pretrained('nomic-ai/nomic-embed-text-v1.5') | |
text_model = AutoModel.from_pretrained('nomic-ai/nomic-embed-text-v1.5', trust_remote_code=True) | |
text_model.eval() | |
def mean_pooling(model_output, attention_mask): | |
token_embeddings = model_output[0] | |
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() | |
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) | |
def TxtEmbed(text): | |
#input_ids = tokenizer.encode(text, return_tensors='pt') | |
#with torch.no_grad(): | |
# outs = model(input_ids) | |
# encoded = outs[0][0, 1:-1] # Ignore [CLS] and [SEP] special tokens | |
#return (encoded.tolist())[0]; | |
sentences = [text] | |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') | |
with torch.no_grad(): | |
model_output = text_model(**encoded_input) | |
text_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) | |
text_embeddings = F.layer_norm(text_embeddings, normalized_shape=(text_embeddings.shape[1],)) | |
text_embeddings = F.normalize(text_embeddings, p=2, dim=1) | |
return (text_embeddings.tolist())[0] | |
with gr.Blocks() as demo: | |
txt = gr.Text(); | |
out = gr.Text(); | |
btn = gr.Button("Generate embeddings") | |
btn.click(TxtEmbed, [txt], [out]) | |
if __name__ == "__main__": | |
demo.launch(show_api=True) |