rrg92's picture
Update app.py
a79d902 verified
import torch
import torch.nn.functional as F
from transformers import AutoTokenizer, AutoModel, AutoImageProcessor
import gradio as gr
import spaces
import torch
# neuralmind/bert-base-portuguese-cased
#ModelName = "neuralmind/bert-base-portuguese-cased"
#model = AutoModel.from_pretrained(ModelName)
#tokenizer = AutoTokenizer.from_pretrained(ModelName, do_lower_case=False)
#processor = AutoImageProcessor.from_pretrained("nomic-ai/nomic-embed-vision-v1.5")
#vision_model = AutoModel.from_pretrained("nomic-ai/nomic-embed-vision-v1.5", trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained('nomic-ai/nomic-embed-text-v1.5')
text_model = AutoModel.from_pretrained('nomic-ai/nomic-embed-text-v1.5', trust_remote_code=True)
text_model.eval()
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
@spaces.GPU
def TxtEmbed(text):
#input_ids = tokenizer.encode(text, return_tensors='pt')
#with torch.no_grad():
# outs = model(input_ids)
# encoded = outs[0][0, 1:-1] # Ignore [CLS] and [SEP] special tokens
#return (encoded.tolist())[0];
sentences = [text]
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
model_output = text_model(**encoded_input)
text_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
text_embeddings = F.layer_norm(text_embeddings, normalized_shape=(text_embeddings.shape[1],))
text_embeddings = F.normalize(text_embeddings, p=2, dim=1)
return (text_embeddings.tolist())[0]
with gr.Blocks() as demo:
txt = gr.Text();
out = gr.Text();
btn = gr.Button("Generate embeddings")
btn.click(TxtEmbed, [txt], [out])
if __name__ == "__main__":
demo.launch(show_api=True)