Spaces:
Runtime error
Runtime error
# 1. The RoBERTa base model is used, fine-tuned using the SQuAD 2.0 dataset. | |
# It’s been trained on question-answer pairs, including unanswerable questions, for the task of question and answering. | |
# from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline | |
# import gradio as grad | |
# import ast | |
# mdl_name = "deepset/roberta-base-squad2" | |
# my_pipeline = pipeline('question-answering', model=mdl_name, tokenizer=mdl_name) | |
# def answer_question(question,context): | |
# text= "{"+"'question': '"+question+"','context': '"+context+"'}" | |
# di=ast.literal_eval(text) | |
# response = my_pipeline(di) | |
# return response | |
# grad.Interface(answer_question, inputs=["text","text"], outputs="text").launch() | |
#--------------------------------------------------------------------------------- | |
# 2. Same task, different model. | |
# from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline | |
# import gradio as grad | |
# import ast | |
# mdl_name = "distilbert-base-cased-distilled-squad" | |
# my_pipeline = pipeline('question-answering', model=mdl_name, tokenizer=mdl_name) | |
# def answer_question(question,context): | |
# text= "{"+"'question': '"+question+"','context': '"+context+"'}" | |
# di=ast.literal_eval(text) | |
# response = my_pipeline(di) | |
# return response | |
# grad.Interface(answer_question, inputs=["text","text"], outputs="text").launch() | |
#--------------------------------------------------------------------------------- | |
# 3. Different task: language translation. | |
# from transformers import pipeline | |
# import gradio as grad | |
# First model translates English to German. | |
# mdl_name = "Helsinki-NLP/opus-mt-en-de" | |
# opus_translator = pipeline("translation", model=mdl_name) | |
# def translate(text): | |
# response = opus_translator(text) | |
# return response | |
# grad.Interface(translate, inputs=["text",], outputs="text").launch() | |
#---------------------------------------------------------------------------------- | |
# 4. Language translation without pipeline API. | |
# Second model translates English to French. | |
# from transformers import AutoModelForSeq2SeqLM, AutoTokenizer | |
# import gradio as grad | |
# mdl_name = "Helsinki-NLP/opus-mt-en-fr" | |
# mdl = AutoModelForSeq2SeqLM.from_pretrained(mdl_name) | |
# my_tkn = AutoTokenizer.from_pretrained(mdl_name) | |
# def translate(text): | |
# inputs = my_tkn(text, return_tensors="pt") | |
# trans_output = mdl.generate(**inputs) | |
# response = my_tkn.decode(trans_output[0], skip_special_tokens=True) | |
# return response | |
# txt = grad.Textbox(lines=1, label="English", placeholder="English Text here") | |
# out = grad.Textbox(lines=1, label="French") | |
# grad.Interface(translate, inputs=txt, outputs=out).launch() | |
#----------------------------------------------------------------------------------- | |
# 5. Different task: abstractive summarization | |
# Abstractive summarization is more difficult than extractive summarization, | |
# which pulls key sentences from a document and combines them to form a “summary.” | |
# Because abstractive summarization involves paraphrasing words, it is also more time-consuming; | |
# however, it has the potential to produce a more polished and coherent summary. | |
# from transformers import PegasusForConditionalGeneration, PegasusTokenizer | |
# import gradio as grad | |
# mdl_name = "google/pegasus-xsum" | |
# pegasus_tkn = PegasusTokenizer.from_pretrained(mdl_name) | |
# mdl = PegasusForConditionalGeneration.from_pretrained(mdl_name) | |
# def summarize(text): | |
# tokens = pegasus_tkn(text, truncation=True, padding="longest", return_tensors="pt") | |
# txt_summary = mdl.generate(**tokens) | |
# response = pegasus_tkn.batch_decode(txt_summary, skip_special_tokens=True) | |
# return response | |
# txt = grad.Textbox(lines=10, label="English", placeholder="English Text here") | |
# out = grad.Textbox(lines=10, label="Summary") | |
# grad.Interface(summarize, inputs=txt, outputs=out).launch() | |
#------------------------------------------------------------------------------------------ | |
# 6. Same model with some tuning with some parameters: num_return_sequences=5, max_length=200, temperature=1.5, num_beams=10 | |
# from transformers import PegasusForConditionalGeneration, PegasusTokenizer | |
# import gradio as grad | |
# mdl_name = "google/pegasus-xsum" | |
# pegasus_tkn = PegasusTokenizer.from_pretrained(mdl_name) | |
# mdl = PegasusForConditionalGeneration.from_pretrained(mdl_name) | |
# def summarize(text): | |
# tokens = pegasus_tkn(text, truncation=True, padding="longest", return_tensors="pt") | |
# translated_txt = mdl.generate(**tokens, num_return_sequences=5, max_length=200, temperature=1.5, num_beams=10) | |
# response = pegasus_tkn.batch_decode(translated_txt, skip_special_tokens=True) | |
# return response | |
# txt = grad.Textbox(lines=10, label="English", placeholder="English Text here") | |
# out = grad.Textbox(lines=10, label="Summary") | |
# grad.Interface(summarize, inputs=txt, outputs=out).launch() | |
#----------------------------------------------------------------------------------- | |
# 7. Zero-Shot Learning: | |
# Zero-shot learning, as the name implies, is to use a pretrained model , trained on a certain set of data, | |
# on a different set of data, which it has not seen during training. This would mean, as an example, to take | |
# some model from huggingface that is trained on a certain dataset and use it for inference on examples it has never seen before. | |
# The transformers are where the zero-shot classification implementations are most frequently found by us. | |
# There are more than 60 transformer models that function based on the zero-shot classification that are found in the huggingface library. | |
# When we discuss zero-shot text classification , there is one additional thing that springs to mind. | |
# In the same vein as zero-shot classification is few-shot classification, which is very similar to zero-shot classification. | |
# However, in contrast with zero-shot classification, few-shot classification makes use of very few labeled samples during the training process. | |
# The implementation of the few-shot classification methods can be found in OpenAI, where the GPT3 classifier is a well-known example of a few-shot classifier. | |
from transformers import pipeline | |
import gradio as grad | |
zero_shot_classifier = pipeline("zero-shot-classification") | |
def classify(text,labels): | |
classifer_labels = labels.split(",") | |
#["software", "politics", "love", "movies", "emergency", "advertisment","sports"] | |
response = zero_shot_classifier(text,classifer_labels) | |
return response | |
txt=grad.Textbox(lines=1, label="English", placeholder="text to be classified") | |
labels=grad.Textbox(lines=1, label="Labels", placeholder="comma separated labels") | |
out=grad.Textbox(lines=1, label="Classification") | |
grad.Interface(classify, inputs=[txt,labels], outputs=out).launch() | |