Spaces:
Runtime error
Runtime error
Update app.py
Browse filesNew T5 use case to summarize a paragraph of text.
app.py
CHANGED
@@ -230,26 +230,52 @@
|
|
230 |
# which provides the model with some form of input and then teaches it to generate some form of target text. This makes it possible to apply
|
231 |
# the same model, loss function, hyperparameters, and other settings to all of our varied sets of responsibilities.
|
232 |
|
233 |
-
from transformers import AutoModelWithLMHead, AutoTokenizer
|
234 |
-
import gradio as grad
|
235 |
|
236 |
-
text2text_tkn = AutoTokenizer.from_pretrained("mrm8488/t5-base-finetuned-question-generation-ap")
|
237 |
-
mdl = AutoModelWithLMHead.from_pretrained("mrm8488/t5-base-finetuned-question-generation-ap")
|
238 |
|
239 |
-
def text2text(context,answer):
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
247 |
|
248 |
-
|
249 |
-
|
250 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
251 |
|
252 |
-
grad.
|
|
|
253 |
|
|
|
254 |
|
255 |
|
|
|
230 |
# which provides the model with some form of input and then teaches it to generate some form of target text. This makes it possible to apply
|
231 |
# the same model, loss function, hyperparameters, and other settings to all of our varied sets of responsibilities.
|
232 |
|
233 |
+
# from transformers import AutoModelWithLMHead, AutoTokenizer
|
234 |
+
# import gradio as grad
|
235 |
|
236 |
+
# text2text_tkn = AutoTokenizer.from_pretrained("mrm8488/t5-base-finetuned-question-generation-ap")
|
237 |
+
# mdl = AutoModelWithLMHead.from_pretrained("mrm8488/t5-base-finetuned-question-generation-ap")
|
238 |
|
239 |
+
# def text2text(context,answer):
|
240 |
+
# input_text = "answer: %s context: %s </s>" % (answer, context)
|
241 |
+
# features = text2text_tkn ([input_text], return_tensors='pt')
|
242 |
+
# output = mdl.generate(input_ids=features['input_ids'],
|
243 |
+
# attention_mask=features['attention_mask'],
|
244 |
+
# max_length=64)
|
245 |
+
# response=text2text_tkn.decode(output[0])
|
246 |
+
# return response
|
247 |
+
|
248 |
+
# context=grad.Textbox(lines=10, label="English", placeholder="Context")
|
249 |
+
# ans=grad.Textbox(lines=1, label="Answer")
|
250 |
+
# out=grad.Textbox(lines=1, label="Genereated Question")
|
251 |
+
|
252 |
+
# grad.Interface(text2text, inputs=[context,ans], outputs=out).launch()
|
253 |
|
254 |
+
#-----------------------------------------------------------------------------------
|
255 |
+
# 11. Text-to-Text Generation using the T5 model - second use case summarizes a paragraph of text.
|
256 |
+
|
257 |
+
from transformers import AutoTokenizer, AutoModelWithLMHead
|
258 |
+
import gradio as grad
|
259 |
+
|
260 |
+
text2text_tkn = AutoTokenizer.from_pretrained("deep-learning-analytics/wikihow-t5-small")
|
261 |
+
mdl = AutoModelWithLMHead.from_pretrained("deep-learning-analytics/wikihow-t5-small")
|
262 |
+
|
263 |
+
def text2text_summary(para):
|
264 |
+
initial_txt = para.strip().replace("\n","")
|
265 |
+
tkn_text = text2text_tkn.encode(initial_txt, return_tensors="pt")
|
266 |
+
tkn_ids = mdl.generate(
|
267 |
+
tkn_text,
|
268 |
+
max_length=250,
|
269 |
+
num_beams=5,
|
270 |
+
repetition_penalty=2.5,
|
271 |
+
early_stopping=True
|
272 |
+
)
|
273 |
+
response = text2text_tkn.decode(tkn_ids[0], skip_special_tokens=True)
|
274 |
+
return response
|
275 |
|
276 |
+
para=grad.Textbox(lines=10, label="Paragraph", placeholder="Copy paragraph")
|
277 |
+
out=grad.Textbox(lines=1, label="Summary")
|
278 |
|
279 |
+
grad.Interface(text2text_summary, inputs=para, outputs=out).launch()
|
280 |
|
281 |
|