Spaces:
Runtime error
Runtime error
Update app.py
Browse filesNew task: abstractive summarization.
app.py
CHANGED
@@ -1,13 +1,28 @@
|
|
1 |
-
from transformers import AutoModel, AutoModelForSeq2SeqLM, AutoModelForQuestionAnswering, AutoTokenizer, pipeline
|
2 |
-
import gradio as grad
|
3 |
-
import ast
|
4 |
-
|
5 |
# 1. The RoBERTa base model is used, fine-tuned using the SQuAD 2.0 dataset.
|
6 |
# It’s been trained on question-answer pairs, including unanswerable questions, for the task of question and answering.
|
|
|
|
|
|
|
|
|
|
|
7 |
# mdl_name = "deepset/roberta-base-squad2"
|
8 |
# my_pipeline = pipeline('question-answering', model=mdl_name, tokenizer=mdl_name)
|
9 |
|
10 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
# mdl_name = "distilbert-base-cased-distilled-squad"
|
12 |
# my_pipeline = pipeline('question-answering', model=mdl_name, tokenizer=mdl_name)
|
13 |
|
@@ -19,7 +34,12 @@ import ast
|
|
19 |
|
20 |
# grad.Interface(answer_question, inputs=["text","text"], outputs="text").launch()
|
21 |
|
|
|
22 |
# 3. Different task: language translation.
|
|
|
|
|
|
|
|
|
23 |
# First model translates English to German.
|
24 |
# mdl_name = "Helsinki-NLP/opus-mt-en-de"
|
25 |
# opus_translator = pipeline("translation", model=mdl_name)
|
@@ -30,18 +50,49 @@ import ast
|
|
30 |
|
31 |
# grad.Interface(translate, inputs=["text",], outputs="text").launch()
|
32 |
|
|
|
33 |
# 4. Language translation without pipeline API.
|
34 |
# Second model translates English to French.
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
# 1. The RoBERTa base model is used, fine-tuned using the SQuAD 2.0 dataset.
|
2 |
# It’s been trained on question-answer pairs, including unanswerable questions, for the task of question and answering.
|
3 |
+
|
4 |
+
# from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
|
5 |
+
# import gradio as grad
|
6 |
+
# import ast
|
7 |
+
|
8 |
# mdl_name = "deepset/roberta-base-squad2"
|
9 |
# my_pipeline = pipeline('question-answering', model=mdl_name, tokenizer=mdl_name)
|
10 |
|
11 |
+
# def answer_question(question,context):
|
12 |
+
# text= "{"+"'question': '"+question+"','context': '"+context+"'}"
|
13 |
+
# di=ast.literal_eval(text)
|
14 |
+
# response = my_pipeline(di)
|
15 |
+
# return response
|
16 |
+
|
17 |
+
# grad.Interface(answer_question, inputs=["text","text"], outputs="text").launch()
|
18 |
+
|
19 |
+
#---------------------------------------------------------------------------------
|
20 |
+
# 2. Same task, different model.
|
21 |
+
|
22 |
+
# from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
|
23 |
+
# import gradio as grad
|
24 |
+
# import ast
|
25 |
+
|
26 |
# mdl_name = "distilbert-base-cased-distilled-squad"
|
27 |
# my_pipeline = pipeline('question-answering', model=mdl_name, tokenizer=mdl_name)
|
28 |
|
|
|
34 |
|
35 |
# grad.Interface(answer_question, inputs=["text","text"], outputs="text").launch()
|
36 |
|
37 |
+
#---------------------------------------------------------------------------------
|
38 |
# 3. Different task: language translation.
|
39 |
+
|
40 |
+
# from transformers import pipeline
|
41 |
+
# import gradio as grad
|
42 |
+
|
43 |
# First model translates English to German.
|
44 |
# mdl_name = "Helsinki-NLP/opus-mt-en-de"
|
45 |
# opus_translator = pipeline("translation", model=mdl_name)
|
|
|
50 |
|
51 |
# grad.Interface(translate, inputs=["text",], outputs="text").launch()
|
52 |
|
53 |
+
#----------------------------------------------------------------------------------
|
54 |
# 4. Language translation without pipeline API.
|
55 |
# Second model translates English to French.
|
56 |
+
|
57 |
+
# from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
58 |
+
# import gradio as grad
|
59 |
+
|
60 |
+
# mdl_name = "Helsinki-NLP/opus-mt-en-fr"
|
61 |
+
# mdl = AutoModelForSeq2SeqLM.from_pretrained(mdl_name)
|
62 |
+
# my_tkn = AutoTokenizer.from_pretrained(mdl_name)
|
63 |
+
|
64 |
+
# def translate(text):
|
65 |
+
# inputs = my_tkn(text, return_tensors="pt")
|
66 |
+
# trans_output = mdl.generate(**inputs)
|
67 |
+
# response = my_tkn.decode(trans_output[0], skip_special_tokens=True)
|
68 |
+
# return response
|
69 |
+
|
70 |
+
# txt = grad.Textbox(lines=1, label="English", placeholder="English Text here")
|
71 |
+
# out = grad.Textbox(lines=1, label="French")
|
72 |
+
# grad.Interface(translate, inputs=txt, outputs=out).launch()
|
73 |
+
|
74 |
+
#-----------------------------------------------------------------------------------
|
75 |
+
# 5. Different task: abstractive summarization
|
76 |
+
# Abstractive summarization is more difficult than extractive summarization,
|
77 |
+
# which pulls key sentences from a document and combines them to form a “summary.”
|
78 |
+
# Because abstractive summarization involves paraphrasing words, it is also more time-consuming;
|
79 |
+
# however, it has the potential to produce a more polished and coherent summary.
|
80 |
+
|
81 |
+
from transformers import PegasusForConditionalGeneration, PegasusTokenizer
|
82 |
+
import gradio as grad
|
83 |
+
|
84 |
+
mdl_name = "google/pegasus-xsum"
|
85 |
+
pegasus_tkn = PegasusTokenizer.from_pretrained(mdl_name)
|
86 |
+
mdl = PegasusForConditionalGeneration.from_pretrained(mdl_name)
|
87 |
+
|
88 |
+
def summarize(text):
|
89 |
+
tokens = pegasus_tkn(text, truncation=True, padding="longest", return_tensors="pt")
|
90 |
+
txt_summary = mdl.generate(**tokens)
|
91 |
+
response = pegasus_tkn.batch_decode(txt_summary, skip_special_tokens=True)
|
92 |
+
return response
|
93 |
+
|
94 |
+
txt = grad.Textbox(lines=10, label="English", placeholder="English Text here")
|
95 |
+
out = grad.Textbox(lines=10, label="Summary")
|
96 |
+
|
97 |
+
grad.Interface(summarize, inputs=txt, outputs=out).launch()
|
98 |
+
|