Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -395,57 +395,80 @@
|
|
395 |
#-----------------------------------------------------------------------------------
|
396 |
# 17. Chatbot/Dialog Bot: a simple bot named Alicia that is based on the Microsoft DialoGPT model .
|
397 |
|
398 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer,BlenderbotForConditionalGeneration
|
399 |
-
import torch
|
400 |
-
|
401 |
-
chat_tkn = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
|
402 |
-
mdl = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium")
|
403 |
-
|
404 |
-
#chat_tkn = AutoTokenizer.from_pretrained("facebook/blenderbot-400M-distill")
|
405 |
-
#mdl = BlenderbotForConditionalGeneration.from_pretrained("facebook/blenderbot-400M-distill")
|
406 |
-
|
407 |
-
def converse(user_input, chat_history=[]):
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
|
431 |
-
|
432 |
|
433 |
-
|
434 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
435 |
import gradio as grad
|
436 |
|
437 |
-
|
438 |
-
.
|
439 |
-
|
440 |
-
|
441 |
-
.
|
442 |
-
|
443 |
-
""
|
444 |
-
|
445 |
-
|
446 |
-
|
447 |
-
|
448 |
-
|
449 |
-
inputs=[text, "state"],
|
450 |
-
outputs=["html", "state"],
|
451 |
-
css=css).launch()
|
|
|
395 |
#-----------------------------------------------------------------------------------
|
396 |
# 17. Chatbot/Dialog Bot: a simple bot named Alicia that is based on the Microsoft DialoGPT model .
|
397 |
|
398 |
+
# from transformers import AutoModelForCausalLM, AutoTokenizer,BlenderbotForConditionalGeneration
|
399 |
+
# import torch
|
400 |
+
|
401 |
+
# chat_tkn = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
|
402 |
+
# mdl = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium")
|
403 |
+
|
404 |
+
# #chat_tkn = AutoTokenizer.from_pretrained("facebook/blenderbot-400M-distill")
|
405 |
+
# #mdl = BlenderbotForConditionalGeneration.from_pretrained("facebook/blenderbot-400M-distill")
|
406 |
+
|
407 |
+
# def converse(user_input, chat_history=[]):
|
408 |
+
# user_input_ids = chat_tkn(user_input + chat_tkn.eos_token, return_tensors='pt').input_ids
|
409 |
+
# # keep history in the tensor
|
410 |
+
# bot_input_ids = torch.cat([torch.LongTensor(chat_history), user_input_ids], dim=-1)
|
411 |
+
# # get response
|
412 |
+
# chat_history = mdl.generate(bot_input_ids, max_length=1000, pad_token_id=chat_tkn.eos_token_id).tolist()
|
413 |
+
# print (chat_history)
|
414 |
+
# response = chat_tkn.decode(chat_history[0]).split("<|endoftext|>")
|
415 |
+
# print("starting to print response")
|
416 |
+
# print(response)
|
417 |
+
# # html for display
|
418 |
+
# html = "<div class='mybot'>"
|
419 |
+
# for x, mesg in enumerate(response):
|
420 |
+
# if x%2!=0 :
|
421 |
+
# mesg="Alicia:"+mesg
|
422 |
+
# clazz="alicia"
|
423 |
+
# else :
|
424 |
+
# clazz="user"
|
425 |
+
# print("value of x")
|
426 |
+
# print(x)
|
427 |
+
# print("message")
|
428 |
+
# print (mesg)
|
429 |
+
# html += "<div class='mesg {}'> {}</div>".format(clazz, mesg)
|
430 |
+
# html += "</div>"
|
431 |
+
# print(html)
|
432 |
|
433 |
+
# return html, chat_history
|
434 |
|
435 |
+
# import gradio as grad
|
436 |
+
|
437 |
+
# css = """
|
438 |
+
# .mychat {display:flex;flex-direction:column}
|
439 |
+
# .mesg {padding:5px;margin-bottom:5px;border-radius:5px;width:75%}
|
440 |
+
# .mesg.user {background-color:lightblue;color:white}
|
441 |
+
# .mesg.alicia {background-color:orange;color:white,align-self:self-end}
|
442 |
+
# .footer {display:none !important}
|
443 |
+
# """
|
444 |
+
|
445 |
+
# text=grad.Textbox(placeholder="Lets chat")
|
446 |
+
|
447 |
+
# grad.Interface(fn=converse,
|
448 |
+
# theme="default",
|
449 |
+
# inputs=[text, "state"],
|
450 |
+
# outputs=["html", "state"],
|
451 |
+
# css=css).launch()
|
452 |
+
|
453 |
+
#-----------------------------------------------------------------------------------
|
454 |
+
# 18. Code and Code Comment Generation
|
455 |
+
|
456 |
+
# CodeGen is a language model that converts basic English prompts into code that can be executed.
|
457 |
+
# Instead of writing code yourself, you describe what the code should do using natural language, and
|
458 |
+
# the machine writes the code for you based on what you’ve described.
|
459 |
+
|
460 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
461 |
import gradio as grad
|
462 |
|
463 |
+
codegen_tkn = AutoTokenizer.from_pretrained("Salesforce/codegen-350M-mono")
|
464 |
+
mdl = AutoModelForCausalLM.from_pretrained("Salesforce/codegen-350M-mono")
|
465 |
+
|
466 |
+
def codegen(intent):
|
467 |
+
# give input as text which reflects intent of the program.
|
468 |
+
#text = " write a function which takes 2 numbers as input and returns the larger of the two"
|
469 |
+
input_ids = codegen_tkn(intent, return_tensors="pt").input_ids
|
470 |
+
gen_ids = mdl.generate(input_ids, max_length=128)
|
471 |
+
response = codegen_tkn.decode(gen_ids[0], skip_special_tokens=True)
|
472 |
+
return response
|
473 |
+
|
474 |
+
output=grad.Textbox(lines=1, label="Generated Python Code", placeholder="")
|
|
|
|
|
|