Spaces:
Runtime error
Runtime error
Update app.py
Browse filesT5 question generation
app.py
CHANGED
@@ -152,7 +152,8 @@
|
|
152 |
# grad.Interface(classify, inputs=[txt,labels], outputs=out).launch()
|
153 |
|
154 |
#-----------------------------------------------------------------------------------
|
155 |
-
# 8. Text Generation Task/Models
|
|
|
156 |
# The earliest text generation models were based on Markov chains . Markov chains are like a state machine wherein
|
157 |
# using only the previous state, the next state is predicted. This is similar also to what we studied in bigrams.
|
158 |
|
@@ -205,17 +206,50 @@
|
|
205 |
#-----------------------------------------------------------------------------------
|
206 |
# 9. Text Generation: different model "distilgpt2"
|
207 |
|
208 |
-
from transformers import pipeline, set_seed
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
209 |
import gradio as grad
|
210 |
|
211 |
-
|
212 |
-
|
213 |
|
214 |
-
def
|
215 |
-
|
|
|
|
|
|
|
|
|
|
|
216 |
return response
|
217 |
|
218 |
-
|
219 |
-
|
|
|
|
|
|
|
|
|
|
|
220 |
|
221 |
-
grad.Interface(generate, inputs=txt, outputs=out).launch()
|
|
|
152 |
# grad.Interface(classify, inputs=[txt,labels], outputs=out).launch()
|
153 |
|
154 |
#-----------------------------------------------------------------------------------
|
155 |
+
# 8. Text Generation Task/Models with GPT2 model
|
156 |
+
|
157 |
# The earliest text generation models were based on Markov chains . Markov chains are like a state machine wherein
|
158 |
# using only the previous state, the next state is predicted. This is similar also to what we studied in bigrams.
|
159 |
|
|
|
206 |
#-----------------------------------------------------------------------------------
|
207 |
# 9. Text Generation: different model "distilgpt2"
|
208 |
|
209 |
+
# from transformers import pipeline, set_seed
|
210 |
+
# import gradio as grad
|
211 |
+
|
212 |
+
# gpt2_pipe = pipeline('text-generation', model='distilgpt2')
|
213 |
+
# set_seed(42)
|
214 |
+
|
215 |
+
# def generate(starting_text):
|
216 |
+
# response= gpt2_pipe(starting_text, max_length=20, num_return_sequences=5)
|
217 |
+
# return response
|
218 |
+
|
219 |
+
# txt=grad.Textbox(lines=1, label="English", placeholder="English Text here")
|
220 |
+
# out=grad.Textbox(lines=1, label="Generated Text")
|
221 |
+
|
222 |
+
# grad.Interface(generate, inputs=txt, outputs=out).launch()
|
223 |
+
|
224 |
+
#-----------------------------------------------------------------------------------
|
225 |
+
# 10. Text-to-Text Generation using the T5 model - first use case generates a question given some context.
|
226 |
+
|
227 |
+
# A transformer-based architecture that takes a text-to-text approach is referred to as T5, which stands for Text-to-Text Transfer Transformer.
|
228 |
+
|
229 |
+
# In the text-to-text approach, we take a task like Q&A, classification, summarization, code generation, etc. and turn it into a problem,
|
230 |
+
# which provides the model with some form of input and then teaches it to generate some form of target text. This makes it possible to apply
|
231 |
+
# the same model, loss function, hyperparameters, and other settings to all of our varied sets of responsibilities.
|
232 |
+
|
233 |
+
from transformers import AutoModelWithLMHead, AutoTokenizer
|
234 |
import gradio as grad
|
235 |
|
236 |
+
text2text_tkn = AutoTokenizer.from_pretrained("mrm8488/t5-base-finetuned-question-generation-ap")
|
237 |
+
mdl = AutoModelWithLMHead.from_pretrained("mrm8488/t5-base-finetuned-question-generation-ap")
|
238 |
|
239 |
+
def text2text(context,answer):
|
240 |
+
input_text = "answer: %s context: %s </s>" % (answer, context)
|
241 |
+
features = text2text_tkn ([input_text], return_tensors='pt')
|
242 |
+
output = mdl.generate(input_ids=features['input_ids'],
|
243 |
+
attention_mask=features['attention_mask'],
|
244 |
+
max_length=64)
|
245 |
+
response=text2text_tkn.decode(output[0])
|
246 |
return response
|
247 |
|
248 |
+
context=grad.Textbox(lines=10, label="English", placeholder="Context")
|
249 |
+
ans=grad.Textbox(lines=1, label="Answer")
|
250 |
+
out=grad.Textbox(lines=1, label="Genereated Question")
|
251 |
+
|
252 |
+
grad.Interface(text2text, inputs=[context,ans], outputs=out).launch()
|
253 |
+
|
254 |
+
|
255 |
|
|