File size: 15,586 Bytes
7629b39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278


import torch
import numpy as np
import pickle as pkl

import os
import sys
sys.path.insert(0, os.path.join(os.path.dirname(__file__), '..', '..', 'src'))
# from priors.pose_prior_35 import Prior
# from priors.tiger_pose_prior.tiger_pose_prior import GaussianMixturePrior
from priors.normalizing_flow_prior.normalizing_flow_prior import NormalizingFlowPrior
from priors.shape_prior import ShapePrior
from lifting_to_3d.utils.geometry_utils import rot6d_to_rotmat, batch_rot2aa
from configs.SMAL_configs import UNITY_SMAL_SHAPE_PRIOR_DOGS  

class Loss(torch.nn.Module):
    def __init__(self, data_info, nf_version=None):
        super(Loss, self).__init__()
        self.criterion_regr = torch.nn.MSELoss()        # takes the mean   
        self.criterion_class = torch.nn.CrossEntropyLoss()
        self.data_info = data_info   
        self.register_buffer('keypoint_weights', torch.tensor(data_info.keypoint_weights)[None, :])
        self.l_anchor = None
        self.l_pos = None
        self.l_neg = None

        if nf_version is not None:
            self.normalizing_flow_pose_prior = NormalizingFlowPrior(nf_version=nf_version)
        self.shape_prior = ShapePrior(UNITY_SMAL_SHAPE_PRIOR_DOGS)
        self.criterion_triplet = torch.nn.TripletMarginLoss(margin=1)

        # load 3d data for the unity dogs (an optional shape prior for 11 breeds)
        with open(UNITY_SMAL_SHAPE_PRIOR_DOGS, 'rb') as f:
            data = pkl.load(f)
        dog_betas_unity = data['dogs_betas']
        self.dog_betas_unity = {29: torch.tensor(dog_betas_unity[0, :]).float(),
                            91: torch.tensor(dog_betas_unity[1, :]).float(),
                            84: torch.tensor(0.5*dog_betas_unity[3, :] + 0.5*dog_betas_unity[14, :]).float(),
                            85: torch.tensor(dog_betas_unity[5, :]).float(),
                            28: torch.tensor(dog_betas_unity[6, :]).float(),
                            94: torch.tensor(dog_betas_unity[7, :]).float(),
                            92: torch.tensor(dog_betas_unity[8, :]).float(),
                            95: torch.tensor(dog_betas_unity[10, :]).float(),
                            20: torch.tensor(dog_betas_unity[11, :]).float(),
                            83: torch.tensor(dog_betas_unity[12, :]).float(),
                            99: torch.tensor(dog_betas_unity[16, :]).float()}

    def prepare_anchor_pos_neg(self, batch_size, device):
        l0 = np.arange(0, batch_size, 2)
        l_anchor = []
        l_pos = []
        l_neg = []
        for ind in l0:
            xx = set(np.arange(0, batch_size))
            xx.discard(ind)
            xx.discard(ind+1)
            for ind2 in xx:
                if ind2 % 2 == 0:
                    l_anchor.append(ind)
                    l_pos.append(ind + 1)
                else:
                    l_anchor.append(ind + 1)
                    l_pos.append(ind)
                l_neg.append(ind2)
        self.l_anchor = torch.Tensor(l_anchor).to(torch.int64).to(device)
        self.l_pos = torch.Tensor(l_pos).to(torch.int64).to(device)
        self.l_neg = torch.Tensor(l_neg).to(torch.int64).to(device)
        return


    def forward(self, output_reproj, target_dict, weight_dict=None):
        # output_reproj: ['vertices_smal', 'keyp_3d', 'keyp_2d', 'silh_image']
        # target_dict: ['index', 'center', 'scale', 'pts', 'tpts', 'target_weight']
        batch_size = output_reproj['keyp_2d'].shape[0]

        # loss on reprojected keypoints 
        output_kp_resh = (output_reproj['keyp_2d']).reshape((-1, 2))    
        target_kp_resh = (target_dict['tpts'][:, :, :2] / 64. * (256. - 1)).reshape((-1, 2))
        weights_resh = target_dict['tpts'][:, :, 2].reshape((-1)) 
        keyp_w_resh = self.keypoint_weights.repeat((batch_size, 1)).reshape((-1))
        loss_keyp = ((((output_kp_resh - target_kp_resh)[weights_resh>0]**2).sum(axis=1).sqrt()*weights_resh[weights_resh>0])*keyp_w_resh[weights_resh>0]).sum() / \
            max((weights_resh[weights_resh>0]*keyp_w_resh[weights_resh>0]).sum(), 1e-5)

        # loss on reprojected silhouette
        assert output_reproj['silh'].shape == (target_dict['silh'][:, None, :, :]).shape
        silh_loss_type = 'default'
        if silh_loss_type == 'default':
            with torch.no_grad():
                thr_silh = 20
                diff = torch.norm(output_kp_resh - target_kp_resh, dim=1)
                diff_x = diff.reshape((batch_size, -1))
                weights_resh_x = weights_resh.reshape((batch_size, -1))
                unweighted_kp_mean_dist = (diff_x * weights_resh_x).sum(dim=1) / ((weights_resh_x).sum(dim=1)+1e-6)
            loss_silh_bs = ((output_reproj['silh'] - target_dict['silh'][:, None, :, :]) ** 2).sum(axis=3).sum(axis=2).sum(axis=1) / (output_reproj['silh'].shape[2]*output_reproj['silh'].shape[3])
            loss_silh = loss_silh_bs[unweighted_kp_mean_dist<thr_silh].sum() / batch_size
        else:
            print('silh_loss_type: ' + silh_loss_type)
            raise ValueError

        # shape regularization
        #   'smal': loss on betas (pca coefficients), betas should be close to 0
        #   'limbs...' loss on selected betas_limbs
        loss_shape_weighted_list = [torch.zeros((1)).mean().to(output_reproj['keyp_2d'].device)]  
        for ind_sp, sp in enumerate(weight_dict['shape_options']):
            weight_sp = weight_dict['shape'][ind_sp]
            # self.logscale_part_list = ['legs_l', 'legs_f', 'tail_l', 'tail_f', 'ears_y', 'ears_l', 'head_l'] 
            if sp == 'smal':
                loss_shape_tmp = self.shape_prior(output_reproj['betas'])
            elif sp == 'limbs':
                loss_shape_tmp = torch.mean((output_reproj['betas_limbs'])**2)  
            elif sp == 'limbs7':
                limb_coeffs_list = [0.01, 1, 0.1, 1, 1, 0.1, 2]
                limb_coeffs = torch.tensor(limb_coeffs_list).to(torch.float32).to(target_dict['tpts'].device)   
                loss_shape_tmp = torch.mean((output_reproj['betas_limbs'] * limb_coeffs[None, :])**2)            
            else:
                raise NotImplementedError
            loss_shape_weighted_list.append(weight_sp * loss_shape_tmp)
        loss_shape_weighted = torch.stack((loss_shape_weighted_list)).sum()

        # 3D loss for dogs for which we have a unity model or toy figure
        loss_models3d = torch.zeros((1)).mean().to(output_reproj['betas'].device)
        if 'models3d' in weight_dict.keys():
            if weight_dict['models3d'] > 0:
                for ind_dog in range(target_dict['breed_index'].shape[0]):
                    breed_index = np.asscalar(target_dict['breed_index'][ind_dog].detach().cpu().numpy())
                    if breed_index in self.dog_betas_unity.keys():
                        betas_target = self.dog_betas_unity[breed_index][:output_reproj['betas'].shape[1]].to(output_reproj['betas'].device)
                        betas_output = output_reproj['betas'][ind_dog, :]
                        betas_limbs_output = output_reproj['betas_limbs'][ind_dog, :]
                        loss_models3d += ((betas_limbs_output**2).sum() + ((betas_output-betas_target)**2).sum()) / (output_reproj['betas'].shape[1] + output_reproj['betas_limbs'].shape[1])
        else:
            weight_dict['models3d'] = 0

        # shape resularization loss on shapedirs
        #   -> in the current version shapedirs are kept fixed, so we don't need those losses
        if weight_dict['shapedirs'] > 0:
            raise NotImplementedError  
        else:
            loss_shapedirs = torch.zeros((1)).mean().to(output_reproj['betas'].device)

        # prior on back joints (not used in cvpr 2022 paper)
        #   -> elementwise MSE loss on all 6 coefficients of 6d rotation representation
        if 'pose_0' in weight_dict.keys(): 
            if weight_dict['pose_0'] > 0:
                pred_pose_rot6d = output_reproj['pose_rot6d']
                w_rj_np = np.zeros((pred_pose_rot6d.shape[1]))
                w_rj_np[[2, 3, 4, 5]] = 1.0         # back
                w_rj = torch.tensor(w_rj_np).to(torch.float32).to(pred_pose_rot6d.device)     
                zero_rot = torch.tensor([1, 0, 0, 1, 0, 0]).to(pred_pose_rot6d.device).to(torch.float32)[None, None, :].repeat((batch_size, pred_pose_rot6d.shape[1], 1))
                loss_pose = self.criterion_regr(pred_pose_rot6d*w_rj[None, :, None], zero_rot*w_rj[None, :, None])
            else:
                loss_pose = torch.zeros((1)).mean()

        # pose prior 
        #   -> we did experiment with different pose priors, for example:
        #       * similart to SMALify (https://github.com/benjiebob/SMALify/blob/master/smal_fitter/smal_fitter.py, 
        #         https://github.com/benjiebob/SMALify/blob/master/smal_fitter/priors/pose_prior_35.py)
        #       * vae 
        #       * normalizing flow pose prior
        #   -> our cvpr 2022 paper uses the normalizing flow pose prior as implemented below
        if 'poseprior' in weight_dict.keys():
            if weight_dict['poseprior'] > 0:
                pred_pose_rot6d = output_reproj['pose_rot6d']
                pred_pose = rot6d_to_rotmat(pred_pose_rot6d.reshape((-1, 6))).reshape((batch_size, -1, 3, 3))
                if 'normalizing_flow_tiger' in weight_dict['poseprior_options']:
                    if output_reproj['normflow_z'] is not None:
                        loss_poseprior = self.normalizing_flow_pose_prior.calculate_loss_from_z(output_reproj['normflow_z'], type='square')
                    else:
                        loss_poseprior = self.normalizing_flow_pose_prior.calculate_loss(pred_pose_rot6d, type='square')
                elif 'normalizing_flow_tiger_logprob' in weight_dict['poseprior_options']:
                    if output_reproj['normflow_z'] is not None:
                        loss_poseprior = self.normalizing_flow_pose_prior.calculate_loss_from_z(output_reproj['normflow_z'], type='neg_log_prob')
                    else:
                        loss_poseprior = self.normalizing_flow_pose_prior.calculate_loss(pred_pose_rot6d, type='neg_log_prob')
                else:
                    raise NotImplementedError
            else:
                loss_poseprior = torch.zeros((1)).mean()
        else:
            weight_dict['poseprior'] = 0
            loss_poseprior = torch.zeros((1)).mean()

        # add a prior which penalizes side-movement angles for legs 
        if 'poselegssidemovement' in weight_dict.keys():
            use_pose_legs_side_loss = True
        else:
            use_pose_legs_side_loss = False
        if use_pose_legs_side_loss:
            leg_indices_right = np.asarray([7, 8, 9, 10, 17, 18, 19, 20])      # front, back
            leg_indices_left = np.asarray([11, 12, 13, 14, 21, 22, 23, 24])     # front, back
            vec = torch.zeros((3, 1)).to(device=pred_pose.device, dtype=pred_pose.dtype)
            vec[2] = -1
            x0_rotmat = pred_pose   
            x0_rotmat_legs_left = x0_rotmat[:, leg_indices_left, :, :]
            x0_rotmat_legs_right = x0_rotmat[:, leg_indices_right, :, :]
            x0_legs_left = x0_rotmat_legs_left.reshape((-1, 3, 3))@vec
            x0_legs_right = x0_rotmat_legs_right.reshape((-1, 3, 3))@vec
            eps=0       # 1e-7
            # use the component of the vector which points to the side
            loss_poselegssidemovement = (x0_legs_left[:, 1]**2).mean() + (x0_legs_right[:, 1]**2).mean()
        else:
            loss_poselegssidemovement = torch.zeros((1)).mean()
            weight_dict['poselegssidemovement'] = 0

        # dog breed classification loss
        dog_breed_gt = target_dict['breed_index']
        dog_breed_pred = output_reproj['dog_breed']
        loss_class = self.criterion_class(dog_breed_pred, dog_breed_gt)

        # dog breed relationship loss
        #   -> we did experiment with many other options, but none was significantly better 
        if '4' in weight_dict['breed_options']:      # we have pairs of dogs of the same breed 
            assert weight_dict['breed'] > 0
            z = output_reproj['z']   
            # go through all pairs and compare them to each other sample
            if self.l_anchor is None:
                self.prepare_anchor_pos_neg(batch_size, z.device)
            anchor = torch.index_select(z, 0, self.l_anchor)
            positive = torch.index_select(z, 0, self.l_pos)
            negative = torch.index_select(z, 0, self.l_neg)
            loss_breed = self.criterion_triplet(anchor, positive, negative)
        else:
            loss_breed = torch.zeros((1)).mean()

        # regularizarion for focal length
        loss_flength_near_mean = torch.mean(output_reproj['flength']**2)
        loss_flength = loss_flength_near_mean

        # bodypart segmentation loss
        if 'partseg' in weight_dict.keys():
            if weight_dict['partseg'] > 0:
                raise NotImplementedError
            else:
                loss_partseg = torch.zeros((1)).mean()
        else:
            weight_dict['partseg'] = 0
            loss_partseg = torch.zeros((1)).mean()

        # weight and combine losses
        loss_keyp_weighted = loss_keyp * weight_dict['keyp']
        loss_silh_weighted = loss_silh * weight_dict['silh']
        loss_shapedirs_weighted = loss_shapedirs * weight_dict['shapedirs']
        loss_pose_weighted = loss_pose * weight_dict['pose_0']
        loss_class_weighted = loss_class * weight_dict['class']
        loss_breed_weighted = loss_breed * weight_dict['breed']
        loss_flength_weighted = loss_flength * weight_dict['flength']
        loss_poseprior_weighted = loss_poseprior * weight_dict['poseprior']
        loss_partseg_weighted = loss_partseg * weight_dict['partseg']
        loss_models3d_weighted = loss_models3d * weight_dict['models3d']
        loss_poselegssidemovement_weighted = loss_poselegssidemovement * weight_dict['poselegssidemovement']

        ####################################################################################################
        loss = loss_keyp_weighted + loss_silh_weighted + loss_shape_weighted + loss_pose_weighted + loss_class_weighted + \
                loss_shapedirs_weighted + loss_breed_weighted + loss_flength_weighted + loss_poseprior_weighted + \
                loss_partseg_weighted + loss_models3d_weighted + loss_poselegssidemovement_weighted
        ####################################################################################################
        
        loss_dict = {'loss': loss.item(), 
                    'loss_keyp_weighted': loss_keyp_weighted.item(), \
                    'loss_silh_weighted': loss_silh_weighted.item(), \
                    'loss_shape_weighted': loss_shape_weighted.item(), \
                    'loss_shapedirs_weighted': loss_shapedirs_weighted.item(), \
                    'loss_pose0_weighted': loss_pose_weighted.item(), \
                    'loss_class_weighted': loss_class_weighted.item(), \
                    'loss_breed_weighted': loss_breed_weighted.item(), \
                    'loss_flength_weighted': loss_flength_weighted.item(), \
                    'loss_poseprior_weighted': loss_poseprior_weighted.item(), \
                    'loss_partseg_weighted': loss_partseg_weighted.item(), \
                    'loss_models3d_weighted': loss_models3d_weighted.item(), \
                    'loss_poselegssidemovement_weighted': loss_poselegssidemovement_weighted.item()}
                    
        return loss, loss_dict