Spaces:
Runtime error
Runtime error
File size: 29,122 Bytes
7629b39 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 |
import pickle as pkl
import numpy as np
import torchvision.models as models
from torchvision import transforms
import torch
from torch import nn
from torch.nn.parameter import Parameter
from kornia.geometry.subpix import dsnt # kornia 0.4.0
import os
import sys
sys.path.insert(0, os.path.join(os.path.dirname(__file__), '..'))
from stacked_hourglass.utils.evaluation import get_preds_soft
from stacked_hourglass import hg1, hg2, hg8
from lifting_to_3d.linear_model import LinearModelComplete, LinearModel
from lifting_to_3d.inn_model_for_shape import INNForShape
from lifting_to_3d.utils.geometry_utils import rot6d_to_rotmat, rotmat_to_rot6d
from smal_pytorch.smal_model.smal_torch_new import SMAL
from smal_pytorch.renderer.differentiable_renderer import SilhRenderer
from bps_2d.bps_for_segmentation import SegBPS
from configs.SMAL_configs import UNITY_SMAL_SHAPE_PRIOR_DOGS as SHAPE_PRIOR
from configs.SMAL_configs import MEAN_DOG_BONE_LENGTHS_NO_RED, VERTEX_IDS_TAIL
class SmallLinear(nn.Module):
def __init__(self, input_size=64, output_size=30, linear_size=128):
super(SmallLinear, self).__init__()
self.relu = nn.ReLU(inplace=True)
self.w1 = nn.Linear(input_size, linear_size)
self.w2 = nn.Linear(linear_size, linear_size)
self.w3 = nn.Linear(linear_size, output_size)
def forward(self, x):
# pre-processing
y = self.w1(x)
y = self.relu(y)
y = self.w2(y)
y = self.relu(y)
y = self.w3(y)
return y
class MyConv1d(nn.Module):
def __init__(self, input_size=37, output_size=30, start=True):
super(MyConv1d, self).__init__()
self.input_size = input_size
self.output_size = output_size
self.start = start
self.weight = Parameter(torch.ones((self.output_size)))
self.bias = Parameter(torch.zeros((self.output_size)))
def forward(self, x):
# pre-processing
if self.start:
y = x[:, :self.output_size]
else:
y = x[:, -self.output_size:]
y = y * self.weight[None, :] + self.bias[None, :]
return y
class ModelShapeAndBreed(nn.Module):
def __init__(self, n_betas=10, n_betas_limbs=13, n_breeds=121, n_z=512, structure_z_to_betas='default'):
super(ModelShapeAndBreed, self).__init__()
self.n_betas = n_betas
self.n_betas_limbs = n_betas_limbs # n_betas_logscale
self.n_breeds = n_breeds
self.structure_z_to_betas = structure_z_to_betas
if self.structure_z_to_betas == '1dconv':
if not (n_z == self.n_betas+self.n_betas_limbs):
raise ValueError
# shape branch
self.resnet = models.resnet34(pretrained=False)
# replace the first layer
n_in = 3 + 1
self.resnet.conv1 = nn.Conv2d(n_in, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
# replace the last layer
self.resnet.fc = nn.Linear(512, n_z)
# softmax
self.soft_max = torch.nn.Softmax(dim=1)
# fc network (and other versions) to connect z with betas
p_dropout = 0.2
if self.structure_z_to_betas == 'default':
self.linear_betas = LinearModel(linear_size=1024,
num_stage=1,
p_dropout=p_dropout,
input_size=n_z,
output_size=self.n_betas)
self.linear_betas_limbs = LinearModel(linear_size=1024,
num_stage=1,
p_dropout=p_dropout,
input_size=n_z,
output_size=self.n_betas_limbs)
elif self.structure_z_to_betas == 'lin':
self.linear_betas = nn.Linear(n_z, self.n_betas)
self.linear_betas_limbs = nn.Linear(n_z, self.n_betas_limbs)
elif self.structure_z_to_betas == 'fc_0':
self.linear_betas = SmallLinear(linear_size=128, # 1024,
input_size=n_z,
output_size=self.n_betas)
self.linear_betas_limbs = SmallLinear(linear_size=128, # 1024,
input_size=n_z,
output_size=self.n_betas_limbs)
elif structure_z_to_betas == 'fc_1':
self.linear_betas = LinearModel(linear_size=64, # 1024,
num_stage=1,
p_dropout=0,
input_size=n_z,
output_size=self.n_betas)
self.linear_betas_limbs = LinearModel(linear_size=64, # 1024,
num_stage=1,
p_dropout=0,
input_size=n_z,
output_size=self.n_betas_limbs)
elif self.structure_z_to_betas == '1dconv':
self.linear_betas = MyConv1d(n_z, self.n_betas, start=True)
self.linear_betas_limbs = MyConv1d(n_z, self.n_betas_limbs, start=False)
elif self.structure_z_to_betas == 'inn':
self.linear_betas_and_betas_limbs = INNForShape(self.n_betas, self.n_betas_limbs, betas_scale=1.0, betas_limbs_scale=1.0)
else:
raise ValueError
# network to connect latent shape vector z with dog breed classification
self.linear_breeds = LinearModel(linear_size=1024, # 1024,
num_stage=1,
p_dropout=p_dropout,
input_size=n_z,
output_size=self.n_breeds)
# shape multiplicator
self.shape_multiplicator_np = np.ones(self.n_betas)
with open(SHAPE_PRIOR, 'rb') as file:
u = pkl._Unpickler(file)
u.encoding = 'latin1'
res = u.load()
# shape predictions are centered around the mean dog of our dog model
self.betas_mean_np = res['dog_cluster_mean']
def forward(self, img, seg_raw=None, seg_prep=None):
# img is the network input image
# seg_raw is before softmax and subtracting 0.5
# seg_prep would be the prepared_segmentation
if seg_prep is None:
seg_prep = self.soft_max(seg_raw)[:, 1:2, :, :] - 0.5
input_img_and_seg = torch.cat((img, seg_prep), axis=1)
res_output = self.resnet(input_img_and_seg)
dog_breed_output = self.linear_breeds(res_output)
if self.structure_z_to_betas == 'inn':
shape_output_orig, shape_limbs_output_orig = self.linear_betas_and_betas_limbs(res_output)
else:
shape_output_orig = self.linear_betas(res_output) * 0.1
betas_mean = torch.tensor(self.betas_mean_np).float().to(img.device)
shape_output = shape_output_orig + betas_mean[None, 0:self.n_betas]
shape_limbs_output_orig = self.linear_betas_limbs(res_output)
shape_limbs_output = shape_limbs_output_orig * 0.1
output_dict = {'z': res_output,
'breeds': dog_breed_output,
'betas': shape_output_orig,
'betas_limbs': shape_limbs_output_orig}
return output_dict
class LearnableShapedirs(nn.Module):
def __init__(self, sym_ids_dict, shapedirs_init, n_betas, n_betas_fixed=10):
super(LearnableShapedirs, self).__init__()
# shapedirs_init = self.smal.shapedirs.detach()
self.n_betas = n_betas
self.n_betas_fixed = n_betas_fixed
self.sym_ids_dict = sym_ids_dict
sym_left_ids = self.sym_ids_dict['left']
sym_right_ids = self.sym_ids_dict['right']
sym_center_ids = self.sym_ids_dict['center']
self.n_center = sym_center_ids.shape[0]
self.n_left = sym_left_ids.shape[0]
self.n_sd = self.n_betas - self.n_betas_fixed # number of learnable shapedirs
# get indices to go from half_shapedirs to shapedirs
inds_back = np.zeros((3889))
for ind in range(0, sym_center_ids.shape[0]):
ind_in_forward = sym_center_ids[ind]
inds_back[ind_in_forward] = ind
for ind in range(0, sym_left_ids.shape[0]):
ind_in_forward = sym_left_ids[ind]
inds_back[ind_in_forward] = sym_center_ids.shape[0] + ind
for ind in range(0, sym_right_ids.shape[0]):
ind_in_forward = sym_right_ids[ind]
inds_back[ind_in_forward] = sym_center_ids.shape[0] + sym_left_ids.shape[0] + ind
self.register_buffer('inds_back_torch', torch.Tensor(inds_back).long())
# self.smal.shapedirs: (51, 11667)
# shapedirs: (3889, 3, n_sd)
# shapedirs_half: (2012, 3, n_sd)
sd = shapedirs_init[:self.n_betas, :].permute((1, 0)).reshape((-1, 3, self.n_betas))
self.register_buffer('sd', sd)
sd_center = sd[sym_center_ids, :, self.n_betas_fixed:]
sd_left = sd[sym_left_ids, :, self.n_betas_fixed:]
self.register_parameter('learnable_half_shapedirs_c0', torch.nn.Parameter(sd_center[:, 0, :].detach()))
self.register_parameter('learnable_half_shapedirs_c2', torch.nn.Parameter(sd_center[:, 2, :].detach()))
self.register_parameter('learnable_half_shapedirs_l0', torch.nn.Parameter(sd_left[:, 0, :].detach()))
self.register_parameter('learnable_half_shapedirs_l1', torch.nn.Parameter(sd_left[:, 1, :].detach()))
self.register_parameter('learnable_half_shapedirs_l2', torch.nn.Parameter(sd_left[:, 2, :].detach()))
def forward(self):
device = self.learnable_half_shapedirs_c0.device
half_shapedirs_center = torch.stack((self.learnable_half_shapedirs_c0, \
torch.zeros((self.n_center, self.n_sd)).to(device), \
self.learnable_half_shapedirs_c2), axis=1)
half_shapedirs_left = torch.stack((self.learnable_half_shapedirs_l0, \
self.learnable_half_shapedirs_l1, \
self.learnable_half_shapedirs_l2), axis=1)
half_shapedirs_right = torch.stack((self.learnable_half_shapedirs_l0, \
- self.learnable_half_shapedirs_l1, \
self.learnable_half_shapedirs_l2), axis=1)
half_shapedirs_tot = torch.cat((half_shapedirs_center, half_shapedirs_left, half_shapedirs_right))
shapedirs = torch.index_select(half_shapedirs_tot, dim=0, index=self.inds_back_torch)
shapedirs_complete = torch.cat((self.sd[:, :, :self.n_betas_fixed], shapedirs), axis=2) # (3889, 3, n_sd)
shapedirs_complete_prepared = torch.cat((self.sd[:, :, :10], shapedirs), axis=2).reshape((-1, 30)).permute((1, 0)) # (n_sd, 11667)
return shapedirs_complete, shapedirs_complete_prepared
class ModelImageToBreed(nn.Module):
def __init__(self, arch='hg8', n_joints=35, n_classes=20, n_partseg=15, n_keyp=20, n_bones=24, n_betas=10, n_betas_limbs=7, n_breeds=121, image_size=256, n_z=512, thr_keyp_sc=None, add_partseg=True):
super(ModelImageToBreed, self).__init__()
self.n_classes = n_classes
self.n_partseg = n_partseg
self.n_betas = n_betas
self.n_betas_limbs = n_betas_limbs
self.n_keyp = n_keyp
self.n_bones = n_bones
self.n_breeds = n_breeds
self.image_size = image_size
self.upsample_seg = True
self.threshold_scores = thr_keyp_sc
self.n_z = n_z
self.add_partseg = add_partseg
# ------------------------------ STACKED HOUR GLASS ------------------------------
if arch == 'hg8':
self.stacked_hourglass = hg8(pretrained=False, num_classes=self.n_classes, num_partseg=self.n_partseg, upsample_seg=self.upsample_seg, add_partseg=self.add_partseg)
else:
raise Exception('unrecognised model architecture: ' + arch)
# ------------------------------ SHAPE AND BREED MODEL ------------------------------
self.breed_model = ModelShapeAndBreed(n_betas=self.n_betas, n_betas_limbs=self.n_betas_limbs, n_breeds=self.n_breeds, n_z=self.n_z)
def forward(self, input_img, norm_dict=None, bone_lengths_prepared=None, betas=None):
batch_size = input_img.shape[0]
device = input_img.device
# ------------------------------ STACKED HOUR GLASS ------------------------------
hourglass_out_dict = self.stacked_hourglass(input_img)
last_seg = hourglass_out_dict['seg_final']
last_heatmap = hourglass_out_dict['out_list_kp'][-1]
# - prepare keypoints (from heatmap)
# normalize predictions -> from logits to probability distribution
# last_heatmap_norm = dsnt.spatial_softmax2d(last_heatmap, temperature=torch.tensor(1))
# keypoints = dsnt.spatial_expectation2d(last_heatmap_norm, normalized_coordinates=False) + 1 # (bs, 20, 2)
# keypoints_norm = dsnt.spatial_expectation2d(last_heatmap_norm, normalized_coordinates=True) # (bs, 20, 2)
keypoints_norm, scores = get_preds_soft(last_heatmap, return_maxval=True, norm_coords=True)
if self.threshold_scores is not None:
scores[scores>self.threshold_scores] = 1.0
scores[scores<=self.threshold_scores] = 0.0
# ------------------------------ SHAPE AND BREED MODEL ------------------------------
# breed_model takes as input the image as well as the predicted segmentation map
# -> we need to split up ModelImageTo3d, such that we can use the silhouette
resnet_output = self.breed_model(img=input_img, seg_raw=last_seg)
pred_breed = resnet_output['breeds'] # (bs, n_breeds)
pred_betas = resnet_output['betas']
pred_betas_limbs = resnet_output['betas_limbs']
small_output = {'keypoints_norm': keypoints_norm,
'keypoints_scores': scores}
small_output_reproj = {'betas': pred_betas,
'betas_limbs': pred_betas_limbs,
'dog_breed': pred_breed}
return small_output, None, small_output_reproj
class ModelImageTo3d_withshape_withproj(nn.Module):
def __init__(self, arch='hg8', num_stage_comb=2, num_stage_heads=1, num_stage_heads_pose=1, trans_sep=False, n_joints=35, n_classes=20, n_partseg=15, n_keyp=20, n_bones=24, n_betas=10, n_betas_limbs=6, n_breeds=121, image_size=256, n_z=512, n_segbps=64*2, thr_keyp_sc=None, add_z_to_3d_input=True, add_segbps_to_3d_input=False, add_partseg=True, silh_no_tail=True, fix_flength=False, render_partseg=False, structure_z_to_betas='default', structure_pose_net='default', nf_version=None):
super(ModelImageTo3d_withshape_withproj, self).__init__()
self.n_classes = n_classes
self.n_partseg = n_partseg
self.n_betas = n_betas
self.n_betas_limbs = n_betas_limbs
self.n_keyp = n_keyp
self.n_bones = n_bones
self.n_breeds = n_breeds
self.image_size = image_size
self.threshold_scores = thr_keyp_sc
self.upsample_seg = True
self.silh_no_tail = silh_no_tail
self.add_z_to_3d_input = add_z_to_3d_input
self.add_segbps_to_3d_input = add_segbps_to_3d_input
self.add_partseg = add_partseg
assert (not self.add_segbps_to_3d_input) or (not self.add_z_to_3d_input)
self.n_z = n_z
if add_segbps_to_3d_input:
self.n_segbps = n_segbps # 64
self.segbps_model = SegBPS()
else:
self.n_segbps = 0
self.fix_flength = fix_flength
self.render_partseg = render_partseg
self.structure_z_to_betas = structure_z_to_betas
self.structure_pose_net = structure_pose_net
assert self.structure_pose_net in ['default', 'vae', 'normflow']
self.nf_version = nf_version
self.register_buffer('betas_zeros', torch.zeros((1, self.n_betas)))
self.register_buffer('mean_dog_bone_lengths', torch.tensor(MEAN_DOG_BONE_LENGTHS_NO_RED, dtype=torch.float32))
p_dropout = 0.2 # 0.5
# ------------------------------ SMAL MODEL ------------------------------
self.smal = SMAL(template_name='neutral')
# New for rendering without tail
f_np = self.smal.faces.detach().cpu().numpy()
self.f_no_tail_np = f_np[np.isin(f_np[:,:], VERTEX_IDS_TAIL).sum(axis=1)==0, :]
# in theory we could optimize for improved shapedirs, but we do not do that
# -> would need to implement regularizations
# -> there are better ways than changing the shapedirs
self.model_learnable_shapedirs = LearnableShapedirs(self.smal.sym_ids_dict, self.smal.shapedirs.detach(), self.n_betas, 10)
# ------------------------------ STACKED HOUR GLASS ------------------------------
if arch == 'hg8':
self.stacked_hourglass = hg8(pretrained=False, num_classes=self.n_classes, num_partseg=self.n_partseg, upsample_seg=self.upsample_seg, add_partseg=self.add_partseg)
else:
raise Exception('unrecognised model architecture: ' + arch)
# ------------------------------ SHAPE AND BREED MODEL ------------------------------
self.breed_model = ModelShapeAndBreed(n_betas=self.n_betas, n_betas_limbs=self.n_betas_limbs, n_breeds=self.n_breeds, n_z=self.n_z, structure_z_to_betas=self.structure_z_to_betas)
# ------------------------------ LINEAR 3D MODEL ------------------------------
# 3d model -> from image to 3d parameters {2d keypoints from heatmap, pose, trans, flength}
self.soft_max = torch.nn.Softmax(dim=1)
input_size = self.n_keyp*3 + self.n_bones
self.model_3d = LinearModelComplete(linear_size=1024,
num_stage_comb=num_stage_comb,
num_stage_heads=num_stage_heads,
num_stage_heads_pose=num_stage_heads_pose,
trans_sep=trans_sep,
p_dropout=p_dropout, # 0.5,
input_size=input_size,
intermediate_size=1024,
output_info=None,
n_joints=n_joints,
n_z=self.n_z,
add_z_to_3d_input=self.add_z_to_3d_input,
n_segbps=self.n_segbps,
add_segbps_to_3d_input=self.add_segbps_to_3d_input,
structure_pose_net=self.structure_pose_net,
nf_version = self.nf_version)
# ------------------------------ RENDERING ------------------------------
self.silh_renderer = SilhRenderer(image_size)
def forward(self, input_img, norm_dict=None, bone_lengths_prepared=None, betas=None):
batch_size = input_img.shape[0]
device = input_img.device
# ------------------------------ STACKED HOUR GLASS ------------------------------
hourglass_out_dict = self.stacked_hourglass(input_img)
last_seg = hourglass_out_dict['seg_final']
last_heatmap = hourglass_out_dict['out_list_kp'][-1]
# - prepare keypoints (from heatmap)
# normalize predictions -> from logits to probability distribution
# last_heatmap_norm = dsnt.spatial_softmax2d(last_heatmap, temperature=torch.tensor(1))
# keypoints = dsnt.spatial_expectation2d(last_heatmap_norm, normalized_coordinates=False) + 1 # (bs, 20, 2)
# keypoints_norm = dsnt.spatial_expectation2d(last_heatmap_norm, normalized_coordinates=True) # (bs, 20, 2)
keypoints_norm, scores = get_preds_soft(last_heatmap, return_maxval=True, norm_coords=True)
if self.threshold_scores is not None:
scores[scores>self.threshold_scores] = 1.0
scores[scores<=self.threshold_scores] = 0.0
# ------------------------------ LEARNABLE SHAPE MODEL ------------------------------
# in our cvpr 2022 paper we do not change the shapedirs
# learnable_sd_complete has shape (3889, 3, n_sd)
# learnable_sd_complete_prepared has shape (n_sd, 11667)
learnable_sd_complete, learnable_sd_complete_prepared = self.model_learnable_shapedirs()
shapedirs_sel = learnable_sd_complete_prepared # None
# ------------------------------ SHAPE AND BREED MODEL ------------------------------
# breed_model takes as input the image as well as the predicted segmentation map
# -> we need to split up ModelImageTo3d, such that we can use the silhouette
resnet_output = self.breed_model(img=input_img, seg_raw=last_seg)
pred_breed = resnet_output['breeds'] # (bs, n_breeds)
pred_z = resnet_output['z']
# - prepare shape
pred_betas = resnet_output['betas']
pred_betas_limbs = resnet_output['betas_limbs']
# - calculate bone lengths
with torch.no_grad():
use_mean_bone_lengths = False
if use_mean_bone_lengths:
bone_lengths_prepared = torch.cat(batch_size*[self.mean_dog_bone_lengths.reshape((1, -1))])
else:
assert (bone_lengths_prepared is None)
bone_lengths_prepared = self.smal.caclulate_bone_lengths(pred_betas, pred_betas_limbs, shapedirs_sel=shapedirs_sel, short=True)
# ------------------------------ LINEAR 3D MODEL ------------------------------
# 3d model -> from image to 3d parameters {2d keypoints from heatmap, pose, trans, flength}
# prepare input for 2d-to-3d network
keypoints_prepared = torch.cat((keypoints_norm, scores), axis=2)
if bone_lengths_prepared is None:
bone_lengths_prepared = torch.cat(batch_size*[self.mean_dog_bone_lengths.reshape((1, -1))])
# should we add silhouette to 3d input? should we add z?
if self.add_segbps_to_3d_input:
seg_raw = last_seg
seg_prep_bps = self.soft_max(seg_raw)[:, 1, :, :] # class 1 is the dog
with torch.no_grad():
seg_prep_np = seg_prep_bps.detach().cpu().numpy()
bps_output_np = self.segbps_model.calculate_bps_points_batch(seg_prep_np) # (bs, 64, 2)
bps_output = torch.tensor(bps_output_np, dtype=torch.float32).to(device).reshape((batch_size, -1))
bps_output_prep = bps_output * 2. - 1
input_vec_keyp_bones = torch.cat((keypoints_prepared.reshape((batch_size, -1)), bone_lengths_prepared), axis=1)
input_vec = torch.cat((input_vec_keyp_bones, bps_output_prep), dim=1)
elif self.add_z_to_3d_input:
# we do not use this in our cvpr 2022 version
input_vec_keyp_bones = torch.cat((keypoints_prepared.reshape((batch_size, -1)), bone_lengths_prepared), axis=1)
input_vec_additional = pred_z
input_vec = torch.cat((input_vec_keyp_bones, input_vec_additional), dim=1)
else:
input_vec = torch.cat((keypoints_prepared.reshape((batch_size, -1)), bone_lengths_prepared), axis=1)
# predict 3d parameters (those are normalized, we need to correct mean and std in a next step)
output = self.model_3d(input_vec)
# add predicted keypoints to the output dict
output['keypoints_norm'] = keypoints_norm
output['keypoints_scores'] = scores
# - denormalize 3d parameters -> so far predictions were normalized, now we denormalize them again
pred_trans = output['trans'] * norm_dict['trans_std'][None, :] + norm_dict['trans_mean'][None, :] # (bs, 3)
if self.structure_pose_net == 'default':
pred_pose_rot6d = output['pose'] + norm_dict['pose_rot6d_mean'][None, :]
elif self.structure_pose_net == 'normflow':
pose_rot6d_mean_zeros = torch.zeros_like(norm_dict['pose_rot6d_mean'][None, :])
pose_rot6d_mean_zeros[:, 0, :] = norm_dict['pose_rot6d_mean'][None, 0, :]
pred_pose_rot6d = output['pose'] + pose_rot6d_mean_zeros
else:
pose_rot6d_mean_zeros = torch.zeros_like(norm_dict['pose_rot6d_mean'][None, :])
pose_rot6d_mean_zeros[:, 0, :] = norm_dict['pose_rot6d_mean'][None, 0, :]
pred_pose_rot6d = output['pose'] + pose_rot6d_mean_zeros
pred_pose_reshx33 = rot6d_to_rotmat(pred_pose_rot6d.reshape((-1, 6)))
pred_pose = pred_pose_reshx33.reshape((batch_size, -1, 3, 3))
pred_pose_rot6d = rotmat_to_rot6d(pred_pose_reshx33).reshape((batch_size, -1, 6))
if self.fix_flength:
output['flength'] = torch.zeros_like(output['flength'])
pred_flength = torch.ones_like(output['flength'])*2100 # norm_dict['flength_mean'][None, :]
else:
pred_flength_orig = output['flength'] * norm_dict['flength_std'][None, :] + norm_dict['flength_mean'][None, :] # (bs, 1)
pred_flength = pred_flength_orig.clone() # torch.abs(pred_flength_orig)
pred_flength[pred_flength_orig<=0] = norm_dict['flength_mean'][None, :]
# ------------------------------ RENDERING ------------------------------
# get 3d model (SMAL)
V, keyp_green_3d, _ = self.smal(beta=pred_betas, betas_limbs=pred_betas_limbs, pose=pred_pose, trans=pred_trans, get_skin=True, keyp_conf='green', shapedirs_sel=shapedirs_sel)
keyp_3d = keyp_green_3d[:, :self.n_keyp, :] # (bs, 20, 3)
# render silhouette
faces_prep = self.smal.faces.unsqueeze(0).expand((batch_size, -1, -1))
if not self.silh_no_tail:
pred_silh_images, pred_keyp = self.silh_renderer(vertices=V,
points=keyp_3d, faces=faces_prep, focal_lengths=pred_flength)
else:
faces_no_tail_prep = torch.tensor(self.f_no_tail_np).to(device).expand((batch_size, -1, -1))
pred_silh_images, pred_keyp = self.silh_renderer(vertices=V,
points=keyp_3d, faces=faces_no_tail_prep, focal_lengths=pred_flength)
# get torch 'Meshes'
torch_meshes = self.silh_renderer.get_torch_meshes(vertices=V, faces=faces_prep)
# render body parts (not part of cvpr 2022 version)
if self.render_partseg:
raise NotImplementedError
else:
partseg_images = None
partseg_images_hg = None
# ------------------------------ PREPARE OUTPUT ------------------------------
# create output dictionarys
# output: contains all output from model_image_to_3d
# output_unnorm: same as output, but normalizations are undone
# output_reproj: smal output and reprojected keypoints as well as silhouette
keypoints_heatmap_256 = (output['keypoints_norm'] / 2. + 0.5) * (self.image_size - 1)
output_unnorm = {'pose_rotmat': pred_pose,
'flength': pred_flength,
'trans': pred_trans,
'keypoints':keypoints_heatmap_256}
output_reproj = {'vertices_smal': V,
'torch_meshes': torch_meshes,
'keyp_3d': keyp_3d,
'keyp_2d': pred_keyp,
'silh': pred_silh_images,
'betas': pred_betas,
'betas_limbs': pred_betas_limbs,
'pose_rot6d': pred_pose_rot6d, # used for pose prior...
'dog_breed': pred_breed,
'shapedirs': shapedirs_sel,
'z': pred_z,
'flength_unnorm': pred_flength,
'flength': output['flength'],
'partseg_images_rend': partseg_images,
'partseg_images_hg_nograd': partseg_images_hg,
'normflow_z': output['normflow_z']}
return output, output_unnorm, output_reproj
def render_vis_nograd(self, vertices, focal_lengths, color=0):
# this function is for visualization only
# vertices: (bs, n_verts, 3)
# focal_lengths: (bs, 1)
# color: integer, either 0 or 1
# returns a torch tensor of shape (bs, image_size, image_size, 3)
with torch.no_grad():
batch_size = vertices.shape[0]
faces_prep = self.smal.faces.unsqueeze(0).expand((batch_size, -1, -1))
visualizations = self.silh_renderer.get_visualization_nograd(vertices,
faces_prep, focal_lengths, color=color)
return visualizations
|