Spaces:
Runtime error
Runtime error
File size: 13,928 Bytes
7629b39 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 |
# 24 joints instead of 20!!
import gzip
import json
import os
import random
import math
import numpy as np
import torch
import torch.utils.data as data
from importlib_resources import open_binary
from scipy.io import loadmat
from tabulate import tabulate
import itertools
import json
from scipy import ndimage
from csv import DictReader
from pycocotools.mask import decode as decode_RLE
import sys
sys.path.insert(0, os.path.join(os.path.dirname(__file__), '..', '..'))
from configs.data_info import COMPLETE_DATA_INFO_24
from stacked_hourglass.utils.imutils import load_image, draw_labelmap, draw_multiple_labelmaps
from stacked_hourglass.utils.misc import to_torch
from stacked_hourglass.utils.transforms import shufflelr, crop, color_normalize, fliplr, transform
import stacked_hourglass.datasets.utils_stanext as utils_stanext
from stacked_hourglass.utils.visualization import save_input_image_with_keypoints
from configs.dog_breeds.dog_breed_class import COMPLETE_ABBREV_DICT, COMPLETE_SUMMARY_BREEDS, SIM_MATRIX_RAW, SIM_ABBREV_INDICES
from configs.dataset_path_configs import STANEXT_RELATED_DATA_ROOT_DIR
class StanExt(data.Dataset):
DATA_INFO = COMPLETE_DATA_INFO_24
# Suggested joints to use for keypoint reprojection error calculations
ACC_JOINTS = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 16]
def __init__(self, image_path=None, is_train=True, inp_res=256, out_res=64, sigma=1,
scale_factor=0.25, rot_factor=30, label_type='Gaussian',
do_augment='default', shorten_dataset_to=None, dataset_mode='keyp_only', V12=None, val_opt='test'):
self.V12 = V12
self.is_train = is_train # training set or test set
if do_augment == 'yes':
self.do_augment = True
elif do_augment == 'no':
self.do_augment = False
elif do_augment=='default':
if self.is_train:
self.do_augment = True
else:
self.do_augment = False
else:
raise ValueError
self.inp_res = inp_res
self.out_res = out_res
self.sigma = sigma
self.scale_factor = scale_factor
self.rot_factor = rot_factor
self.label_type = label_type
self.dataset_mode = dataset_mode
if self.dataset_mode=='complete' or self.dataset_mode=='keyp_and_seg' or self.dataset_mode=='keyp_and_seg_and_partseg':
self.calc_seg = True
else:
self.calc_seg = False
self.val_opt = val_opt
# create train/val split
self.img_folder = utils_stanext.get_img_dir(V12=self.V12)
self.train_dict, init_test_dict, init_val_dict = utils_stanext.load_stanext_json_as_dict(split_train_test=True, V12=self.V12)
self.train_name_list = list(self.train_dict.keys()) # 7004
if self.val_opt == 'test':
self.test_dict = init_test_dict
self.test_name_list = list(self.test_dict.keys())
elif self.val_opt == 'val':
self.test_dict = init_val_dict
self.test_name_list = list(self.test_dict.keys())
else:
raise NotImplementedError
# stanext breed dict (contains for each name a stanext specific index)
breed_json_path = os.path.join(STANEXT_RELATED_DATA_ROOT_DIR, 'StanExt_breed_dict_v2.json')
self.breed_dict = self.get_breed_dict(breed_json_path, create_new_breed_json=False)
self.train_name_list = sorted(self.train_name_list)
self.test_name_list = sorted(self.test_name_list)
random.seed(4)
random.shuffle(self.train_name_list)
random.shuffle(self.test_name_list)
if shorten_dataset_to is not None:
# sometimes it is useful to have a smaller set (validation speed, debugging)
self.train_name_list = self.train_name_list[0 : min(len(self.train_name_list), shorten_dataset_to)]
self.test_name_list = self.test_name_list[0 : min(len(self.test_name_list), shorten_dataset_to)]
# special case for debugging: 12 similar images
if shorten_dataset_to == 12:
my_sample = self.test_name_list[2]
for ind in range(0, 12):
self.test_name_list[ind] = my_sample
print('len(dataset): ' + str(self.__len__()))
# add results for eyes, whithers and throat as obtained through anipose -> they are used
# as pseudo ground truth at training time.
self.path_anipose_out_root = os.path.join(STANEXT_RELATED_DATA_ROOT_DIR, 'animalpose_hg8_v0_results_on_StanExt')
def get_data_sampler_info(self):
# for custom data sampler
if self.is_train:
name_list = self.train_name_list
else:
name_list = self.test_name_list
info_dict = {'name_list': name_list,
'stanext_breed_dict': self.breed_dict,
'breeds_abbrev_dict': COMPLETE_ABBREV_DICT,
'breeds_summary': COMPLETE_SUMMARY_BREEDS,
'breeds_sim_martix_raw': SIM_MATRIX_RAW,
'breeds_sim_abbrev_inds': SIM_ABBREV_INDICES
}
return info_dict
def get_breed_dict(self, breed_json_path, create_new_breed_json=False):
if create_new_breed_json:
breed_dict = {}
breed_index = 0
for img_name in self.train_name_list:
folder_name = img_name.split('/')[0]
breed_name = folder_name.split(folder_name.split('-')[0] + '-')[1]
if not (folder_name in breed_dict):
breed_dict[folder_name] = {
'breed_name': breed_name,
'index': breed_index}
breed_index += 1
with open(breed_json_path, 'w', encoding='utf-8') as f: json.dump(breed_dict, f, ensure_ascii=False, indent=4)
else:
with open(breed_json_path) as json_file: breed_dict = json.load(json_file)
return breed_dict
def __getitem__(self, index):
if self.is_train:
name = self.train_name_list[index]
data = self.train_dict[name]
else:
name = self.test_name_list[index]
data = self.test_dict[name]
sf = self.scale_factor
rf = self.rot_factor
img_path = os.path.join(self.img_folder, data['img_path'])
try:
anipose_res_path = os.path.join(self.path_anipose_out_root, data['img_path'].replace('.jpg', '.json'))
with open(anipose_res_path) as f: anipose_data = json.load(f)
anipose_thr = 0.2
anipose_joints_0to24 = np.asarray(anipose_data['anipose_joints_0to24']).reshape((-1, 3))
anipose_joints_0to24_scores = anipose_joints_0to24[:, 2]
# anipose_joints_0to24_scores[anipose_joints_0to24_scores>anipose_thr] = 1.0
anipose_joints_0to24_scores[anipose_joints_0to24_scores<anipose_thr] = 0.0
anipose_joints_0to24[:, 2] = anipose_joints_0to24_scores
except:
# REMARK: This happens sometimes!!! maybe once every 10th image..?
# print('no anipose eye keypoints!')
anipose_joints_0to24 = np.zeros((24, 3))
joints = np.concatenate((np.asarray(data['joints'])[:20, :], anipose_joints_0to24[20:24, :]), axis=0)
joints[joints[:, 2]==0, :2] = 0 # avoid nan values
pts = torch.Tensor(joints)
# inp = crop(img, c, s, [self.inp_res, self.inp_res], rot=r)
# sf = scale * 200.0 / res[0] # res[0]=256
# center = center * 1.0 / sf
# scale = scale / sf = 256 / 200
# h = 200 * scale
bbox_xywh = data['img_bbox']
bbox_c = [bbox_xywh[0]+0.5*bbox_xywh[2], bbox_xywh[1]+0.5*bbox_xywh[3]]
bbox_max = max(bbox_xywh[2], bbox_xywh[3])
bbox_diag = math.sqrt(bbox_xywh[2]**2 + bbox_xywh[3]**2)
# bbox_s = bbox_max / 200. # the dog will fill the image -> bbox_max = 256
# bbox_s = bbox_diag / 200. # diagonal of the boundingbox will be 200
bbox_s = bbox_max / 200. * 256. / 200. # maximum side of the bbox will be 200
c = torch.Tensor(bbox_c)
s = bbox_s
# For single-person pose estimation with a centered/scaled figure
nparts = pts.size(0)
img = load_image(img_path) # CxHxW
# segmentation map (we reshape it to 3xHxW, such that we can do the
# same transformations as with the image)
if self.calc_seg:
seg = torch.Tensor(utils_stanext.get_seg_from_entry(data)[None, :, :])
seg = torch.cat(3*[seg])
r = 0
do_flip = False
if self.do_augment:
s = s*torch.randn(1).mul_(sf).add_(1).clamp(1-sf, 1+sf)[0]
r = torch.randn(1).mul_(rf).clamp(-2*rf, 2*rf)[0] if random.random() <= 0.6 else 0
# Flip
if random.random() <= 0.5:
do_flip = True
img = fliplr(img)
if self.calc_seg:
seg = fliplr(seg)
pts = shufflelr(pts, img.size(2), self.DATA_INFO.hflip_indices)
c[0] = img.size(2) - c[0]
# Color
img[0, :, :].mul_(random.uniform(0.8, 1.2)).clamp_(0, 1)
img[1, :, :].mul_(random.uniform(0.8, 1.2)).clamp_(0, 1)
img[2, :, :].mul_(random.uniform(0.8, 1.2)).clamp_(0, 1)
# Prepare image and groundtruth map
inp = crop(img, c, s, [self.inp_res, self.inp_res], rot=r)
img_border_mask = torch.all(inp > 1.0/256, dim = 0).unsqueeze(0).float() # 1 is foreground
inp = color_normalize(inp, self.DATA_INFO.rgb_mean, self.DATA_INFO.rgb_stddev)
if self.calc_seg:
seg = crop(seg, c, s, [self.inp_res, self.inp_res], rot=r)
# Generate ground truth
tpts = pts.clone()
target_weight = tpts[:, 2].clone().view(nparts, 1)
target = torch.zeros(nparts, self.out_res, self.out_res)
for i in range(nparts):
# if tpts[i, 2] > 0: # This is evil!!
if tpts[i, 1] > 0:
tpts[i, 0:2] = to_torch(transform(tpts[i, 0:2]+1, c, s, [self.out_res, self.out_res], rot=r, as_int=False))
target[i], vis = draw_labelmap(target[i], tpts[i]-1, self.sigma, type=self.label_type)
target_weight[i, 0] *= vis
# NEW:
'''target_new, vis_new = draw_multiple_labelmaps((self.out_res, self.out_res), tpts[:, :2]-1, self.sigma, type=self.label_type)
target_weight_new = tpts[:, 2].clone().view(nparts, 1) * vis_new
target_new[(target_weight_new==0).reshape((-1)), :, :] = 0'''
# --- Meta info
this_breed = self.breed_dict[name.split('/')[0]] # 120
# add information about location within breed similarity matrix
folder_name = name.split('/')[0]
breed_name = folder_name.split(folder_name.split('-')[0] + '-')[1]
abbrev = COMPLETE_ABBREV_DICT[breed_name]
try:
sim_breed_index = COMPLETE_SUMMARY_BREEDS[abbrev]._ind_in_xlsx_matrix
except: # some breeds are not in the xlsx file
sim_breed_index = -1
meta = {'index' : index, 'center' : c, 'scale' : s,
'pts' : pts, 'tpts' : tpts, 'target_weight': target_weight,
'breed_index': this_breed['index'], 'sim_breed_index': sim_breed_index,
'ind_dataset': 0} # ind_dataset=0 for stanext or stanexteasy or stanext 2
meta2 = {'index' : index, 'center' : c, 'scale' : s,
'pts' : pts, 'tpts' : tpts, 'target_weight': target_weight,
'ind_dataset': 3}
# return different things depending on dataset_mode
if self.dataset_mode=='keyp_only':
# save_input_image_with_keypoints(inp, meta['tpts'], out_path='./test_input_stanext.png', ratio_in_out=self.inp_res/self.out_res)
return inp, target, meta
elif self.dataset_mode=='keyp_and_seg':
meta['silh'] = seg[0, :, :]
meta['name'] = name
return inp, target, meta
elif self.dataset_mode=='keyp_and_seg_and_partseg':
# partseg is fake! this does only exist such that this dataset can be combined with an other datset that has part segmentations
meta2['silh'] = seg[0, :, :]
meta2['name'] = name
fake_body_part_matrix = torch.ones((3, 256, 256)).long() * (-1)
meta2['body_part_matrix'] = fake_body_part_matrix
return inp, target, meta2
elif self.dataset_mode=='complete':
target_dict = meta
target_dict['silh'] = seg[0, :, :]
# NEW for silhouette loss
target_dict['img_border_mask'] = img_border_mask
target_dict['has_seg'] = True
if target_dict['silh'].sum() < 1:
if ((not self.is_train) and self.val_opt == 'test'):
raise ValueError
elif self.is_train:
print('had to replace training image')
replacement_index = max(0, index - 1)
inp, target_dict = self.__getitem__(replacement_index)
else:
# There seem to be a few validation images without segmentation
# which would lead to nan in iou calculation
replacement_index = max(0, index - 1)
inp, target_dict = self.__getitem__(replacement_index)
return inp, target_dict
else:
print('sampling error')
import pdb; pdb.set_trace()
raise ValueError
def __len__(self):
if self.is_train:
return len(self.train_name_list)
else:
return len(self.test_name_list)
|