File size: 13,928 Bytes
7629b39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
# 24 joints instead of 20!!


import gzip
import json
import os
import random
import math
import numpy as np
import torch
import torch.utils.data as data
from importlib_resources import open_binary
from scipy.io import loadmat
from tabulate import tabulate
import itertools
import json
from scipy import ndimage

from csv import DictReader
from pycocotools.mask import decode as decode_RLE

import sys
sys.path.insert(0, os.path.join(os.path.dirname(__file__), '..', '..'))
from configs.data_info import COMPLETE_DATA_INFO_24
from stacked_hourglass.utils.imutils import load_image, draw_labelmap, draw_multiple_labelmaps
from stacked_hourglass.utils.misc import to_torch
from stacked_hourglass.utils.transforms import shufflelr, crop, color_normalize, fliplr, transform
import stacked_hourglass.datasets.utils_stanext as utils_stanext 
from stacked_hourglass.utils.visualization import save_input_image_with_keypoints
from configs.dog_breeds.dog_breed_class import COMPLETE_ABBREV_DICT, COMPLETE_SUMMARY_BREEDS, SIM_MATRIX_RAW, SIM_ABBREV_INDICES
from configs.dataset_path_configs import STANEXT_RELATED_DATA_ROOT_DIR


class StanExt(data.Dataset):
    DATA_INFO = COMPLETE_DATA_INFO_24

    # Suggested joints to use for keypoint reprojection error calculations 
    ACC_JOINTS = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 16]      

    def __init__(self, image_path=None, is_train=True, inp_res=256, out_res=64, sigma=1,
                 scale_factor=0.25, rot_factor=30, label_type='Gaussian', 
                 do_augment='default', shorten_dataset_to=None, dataset_mode='keyp_only', V12=None, val_opt='test'):
        self.V12 = V12
        self.is_train = is_train    # training set or test set
        if do_augment == 'yes':
            self.do_augment = True
        elif do_augment == 'no':
            self.do_augment = False
        elif do_augment=='default':
            if self.is_train:
                self.do_augment = True
            else:
                self.do_augment = False
        else:
            raise ValueError
        self.inp_res = inp_res
        self.out_res = out_res
        self.sigma = sigma
        self.scale_factor = scale_factor
        self.rot_factor = rot_factor
        self.label_type = label_type
        self.dataset_mode = dataset_mode
        if self.dataset_mode=='complete' or self.dataset_mode=='keyp_and_seg' or self.dataset_mode=='keyp_and_seg_and_partseg':
            self.calc_seg = True
        else:
            self.calc_seg = False
        self.val_opt = val_opt

        # create train/val split
        self.img_folder = utils_stanext.get_img_dir(V12=self.V12)
        self.train_dict, init_test_dict, init_val_dict = utils_stanext.load_stanext_json_as_dict(split_train_test=True, V12=self.V12)
        self.train_name_list = list(self.train_dict.keys())     # 7004
        if self.val_opt == 'test':
            self.test_dict = init_test_dict
            self.test_name_list = list(self.test_dict.keys())        
        elif self.val_opt == 'val':
            self.test_dict = init_val_dict
            self.test_name_list = list(self.test_dict.keys())       
        else:
            raise NotImplementedError

        # stanext breed dict (contains for each name a stanext specific index)
        breed_json_path = os.path.join(STANEXT_RELATED_DATA_ROOT_DIR, 'StanExt_breed_dict_v2.json')
        self.breed_dict = self.get_breed_dict(breed_json_path, create_new_breed_json=False) 
        self.train_name_list = sorted(self.train_name_list)
        self.test_name_list = sorted(self.test_name_list)
        random.seed(4)
        random.shuffle(self.train_name_list)
        random.shuffle(self.test_name_list)
        if shorten_dataset_to is not None:
            # sometimes it is useful to have a smaller set (validation speed, debugging)
            self.train_name_list = self.train_name_list[0 : min(len(self.train_name_list), shorten_dataset_to)]
            self.test_name_list = self.test_name_list[0 : min(len(self.test_name_list), shorten_dataset_to)]
            # special case for debugging: 12 similar images
            if shorten_dataset_to == 12:
                my_sample = self.test_name_list[2]
                for ind in range(0, 12):
                    self.test_name_list[ind] = my_sample
        print('len(dataset): ' + str(self.__len__()))

        # add results for eyes, whithers and throat as obtained through anipose -> they are used
        #   as pseudo ground truth at training time.
        self.path_anipose_out_root = os.path.join(STANEXT_RELATED_DATA_ROOT_DIR, 'animalpose_hg8_v0_results_on_StanExt')

        
    def get_data_sampler_info(self):
        # for custom data sampler
        if self.is_train:
            name_list = self.train_name_list
        else:
            name_list = self.test_name_list 
        info_dict = {'name_list': name_list,
                    'stanext_breed_dict': self.breed_dict,
                    'breeds_abbrev_dict': COMPLETE_ABBREV_DICT, 
                    'breeds_summary': COMPLETE_SUMMARY_BREEDS, 
                    'breeds_sim_martix_raw': SIM_MATRIX_RAW, 
                    'breeds_sim_abbrev_inds': SIM_ABBREV_INDICES
                    }
        return info_dict


    def get_breed_dict(self, breed_json_path, create_new_breed_json=False):
        if create_new_breed_json:
            breed_dict = {}
            breed_index = 0
            for img_name in self.train_name_list: 
                folder_name = img_name.split('/')[0]
                breed_name = folder_name.split(folder_name.split('-')[0] + '-')[1]
                if not (folder_name in breed_dict):
                    breed_dict[folder_name] = {
                        'breed_name': breed_name,
                        'index': breed_index}
                    breed_index += 1
            with open(breed_json_path, 'w', encoding='utf-8') as f: json.dump(breed_dict, f, ensure_ascii=False, indent=4)
        else:
            with open(breed_json_path) as json_file: breed_dict = json.load(json_file)
        return breed_dict


    def __getitem__(self, index):

        if self.is_train:
            name = self.train_name_list[index]
            data = self.train_dict[name]
        else:
            name = self.test_name_list[index]
            data = self.test_dict[name]

        sf = self.scale_factor
        rf = self.rot_factor

        img_path = os.path.join(self.img_folder, data['img_path'])
        try:
            anipose_res_path = os.path.join(self.path_anipose_out_root, data['img_path'].replace('.jpg', '.json'))
            with open(anipose_res_path) as f: anipose_data = json.load(f)
            anipose_thr = 0.2
            anipose_joints_0to24 = np.asarray(anipose_data['anipose_joints_0to24']).reshape((-1, 3))
            anipose_joints_0to24_scores = anipose_joints_0to24[:, 2]
            # anipose_joints_0to24_scores[anipose_joints_0to24_scores>anipose_thr] = 1.0
            anipose_joints_0to24_scores[anipose_joints_0to24_scores<anipose_thr] = 0.0
            anipose_joints_0to24[:, 2] = anipose_joints_0to24_scores
        except:
            # REMARK: This happens sometimes!!! maybe once every 10th image..?
            # print('no anipose eye keypoints!')
            anipose_joints_0to24 = np.zeros((24, 3))

        joints = np.concatenate((np.asarray(data['joints'])[:20, :], anipose_joints_0to24[20:24, :]), axis=0)
        joints[joints[:, 2]==0, :2] = 0     # avoid nan values
        pts = torch.Tensor(joints)

        # inp = crop(img, c, s, [self.inp_res, self.inp_res], rot=r)
        # sf = scale * 200.0 / res[0]  # res[0]=256
        # center = center * 1.0 / sf
        # scale = scale / sf = 256 / 200
        # h = 200 * scale
        bbox_xywh = data['img_bbox']
        bbox_c = [bbox_xywh[0]+0.5*bbox_xywh[2], bbox_xywh[1]+0.5*bbox_xywh[3]]
        bbox_max = max(bbox_xywh[2], bbox_xywh[3])
        bbox_diag = math.sqrt(bbox_xywh[2]**2 + bbox_xywh[3]**2)
        # bbox_s = bbox_max / 200.      # the dog will fill the image -> bbox_max = 256
        # bbox_s = bbox_diag / 200.     # diagonal of the boundingbox will be 200
        bbox_s = bbox_max / 200. * 256. / 200.  # maximum side of the bbox will be 200
        c = torch.Tensor(bbox_c)
        s = bbox_s

        # For single-person pose estimation with a centered/scaled figure
        nparts = pts.size(0)
        img = load_image(img_path)  # CxHxW

        # segmentation map (we reshape it to 3xHxW, such that we can do the 
        #   same transformations as with the image)
        if self.calc_seg:
            seg = torch.Tensor(utils_stanext.get_seg_from_entry(data)[None, :, :])
            seg = torch.cat(3*[seg])

        r = 0
        do_flip = False
        if self.do_augment:
            s = s*torch.randn(1).mul_(sf).add_(1).clamp(1-sf, 1+sf)[0]
            r = torch.randn(1).mul_(rf).clamp(-2*rf, 2*rf)[0] if random.random() <= 0.6 else 0
            # Flip
            if random.random() <= 0.5:
                do_flip = True
                img = fliplr(img)
                if self.calc_seg:
                    seg = fliplr(seg)
                pts = shufflelr(pts, img.size(2), self.DATA_INFO.hflip_indices)
                c[0] = img.size(2) - c[0]
            # Color
            img[0, :, :].mul_(random.uniform(0.8, 1.2)).clamp_(0, 1)
            img[1, :, :].mul_(random.uniform(0.8, 1.2)).clamp_(0, 1)
            img[2, :, :].mul_(random.uniform(0.8, 1.2)).clamp_(0, 1)

        # Prepare image and groundtruth map
        inp = crop(img, c, s, [self.inp_res, self.inp_res], rot=r)
        img_border_mask = torch.all(inp > 1.0/256, dim = 0).unsqueeze(0).float()        # 1 is foreground
        inp = color_normalize(inp, self.DATA_INFO.rgb_mean, self.DATA_INFO.rgb_stddev)
        if self.calc_seg:
            seg = crop(seg, c, s, [self.inp_res, self.inp_res], rot=r)

        # Generate ground truth
        tpts = pts.clone()
        target_weight = tpts[:, 2].clone().view(nparts, 1)
        
        target = torch.zeros(nparts, self.out_res, self.out_res)
        for i in range(nparts):
            # if tpts[i, 2] > 0: # This is evil!!
            if tpts[i, 1] > 0:
                tpts[i, 0:2] = to_torch(transform(tpts[i, 0:2]+1, c, s, [self.out_res, self.out_res], rot=r, as_int=False))
                target[i], vis = draw_labelmap(target[i], tpts[i]-1, self.sigma, type=self.label_type)
                target_weight[i, 0] *= vis
        # NEW:
        '''target_new, vis_new = draw_multiple_labelmaps((self.out_res, self.out_res), tpts[:, :2]-1, self.sigma, type=self.label_type)
        target_weight_new = tpts[:, 2].clone().view(nparts, 1) * vis_new
        target_new[(target_weight_new==0).reshape((-1)), :, :] = 0'''
                        
        # --- Meta info
        this_breed = self.breed_dict[name.split('/')[0]]        # 120
        # add information about location within breed similarity matrix
        folder_name = name.split('/')[0]
        breed_name = folder_name.split(folder_name.split('-')[0] + '-')[1]
        abbrev = COMPLETE_ABBREV_DICT[breed_name]
        try:
            sim_breed_index = COMPLETE_SUMMARY_BREEDS[abbrev]._ind_in_xlsx_matrix 
        except: # some breeds are not in the xlsx file
            sim_breed_index = -1
        meta = {'index' : index, 'center' : c, 'scale' : s,
            'pts' : pts, 'tpts' : tpts, 'target_weight': target_weight, 
            'breed_index': this_breed['index'], 'sim_breed_index': sim_breed_index,
            'ind_dataset': 0}   # ind_dataset=0 for stanext or stanexteasy or stanext 2
        meta2 = {'index' : index, 'center' : c, 'scale' : s,
            'pts' : pts, 'tpts' : tpts, 'target_weight': target_weight, 
           'ind_dataset': 3} 

        # return different things depending on dataset_mode
        if self.dataset_mode=='keyp_only':
            # save_input_image_with_keypoints(inp, meta['tpts'], out_path='./test_input_stanext.png', ratio_in_out=self.inp_res/self.out_res)
            return inp, target, meta
        elif self.dataset_mode=='keyp_and_seg':
            meta['silh'] = seg[0, :, :]
            meta['name'] = name
            return inp, target, meta
        elif self.dataset_mode=='keyp_and_seg_and_partseg':
            # partseg is fake! this does only exist such that this dataset can be combined with an other datset that has part segmentations
            meta2['silh'] = seg[0, :, :]
            meta2['name'] = name
            fake_body_part_matrix = torch.ones((3, 256, 256)).long() * (-1)
            meta2['body_part_matrix'] = fake_body_part_matrix
            return inp, target, meta2
        elif self.dataset_mode=='complete':
            target_dict = meta
            target_dict['silh'] = seg[0, :, :]
            # NEW for silhouette loss
            target_dict['img_border_mask'] = img_border_mask
            target_dict['has_seg'] = True
            if target_dict['silh'].sum() < 1:
                if  ((not self.is_train) and self.val_opt == 'test'):
                    raise ValueError
                elif self.is_train:
                    print('had to replace training image')
                    replacement_index = max(0, index - 1)
                    inp, target_dict = self.__getitem__(replacement_index)                    
                else:
                    # There seem to be a few validation images without segmentation
                    # which would lead to nan in iou calculation
                    replacement_index = max(0, index - 1)
                    inp, target_dict = self.__getitem__(replacement_index)
            return inp, target_dict
        else:
            print('sampling error')
            import pdb; pdb.set_trace()
            raise ValueError


    def __len__(self):
        if self.is_train:
            return len(self.train_name_list) 
        else:
            return len(self.test_name_list)