File size: 8,789 Bytes
7629b39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237

import torch
from torch.nn import functional as F
import numpy as np
from torch import nn


def geodesic_loss(R, Rgt):
    # see: Silvia tiger pose model 3d code
    num_joints = R.shape[1]
    RT = R.permute(0,1,3,2)
    A = torch.matmul(RT.view(-1,3,3),Rgt.view(-1,3,3))
    # torch.trace works only for 2D tensors
    n = A.shape[0]
    po_loss =  0
    eps = 1e-7
    T = torch.sum(A[:,torch.eye(3).bool()],1)
    theta = torch.clamp(0.5*(T-1), -1+eps, 1-eps)
    angles =  torch.acos(theta)
    loss = torch.sum(angles)/(n*num_joints)
    return loss

class geodesic_loss_R(nn.Module):
    def __init__(self,reduction='mean'):
        super(geodesic_loss_R, self).__init__()
        self.reduction = reduction
        self.eps = 1e-6

    # batch geodesic loss for rotation matrices
    def bgdR(self,bRgts,bRps):
        #return((bRgts - bRps)**2.).mean()
        return geodesic_loss(bRgts, bRps)

    def forward(self, ypred, ytrue):
        theta = geodesic_loss(ypred,ytrue)
        if self.reduction == 'mean':
            return torch.mean(theta)
        else:
            return theta

def batch_rodrigues_numpy(theta):
    """ Code adapted from spin
    Convert axis-angle representation to rotation matrix.
    Remark: 
        this leads to the same result as kornia.angle_axis_to_rotation_matrix(theta)
    Args:
        theta: size = [B, 3]
    Returns:
        Rotation matrix corresponding to the quaternion -- size = [B, 3, 3]
    """
    l1norm = np.linalg.norm(theta + 1e-8, ord = 2, axis = 1)
    # angle = np.unsqueeze(l1norm, -1)
    angle = l1norm.reshape((-1, 1))
    # normalized = np.div(theta, angle)
    normalized = theta / angle
    angle = angle * 0.5
    v_cos = np.cos(angle)
    v_sin = np.sin(angle)
    # quat = np.cat([v_cos, v_sin * normalized], dim = 1)
    quat = np.concatenate([v_cos, v_sin * normalized], axis = 1)
    return quat_to_rotmat_numpy(quat)

def quat_to_rotmat_numpy(quat):
    """Code from: https://github.com/nkolot/SPIN/blob/master/utils/geometry.py
    Convert quaternion coefficients to rotation matrix.
    Args:
        quat: size = [B, 4] 4 <===>(w, x, y, z)
    Returns:
        Rotation matrix corresponding to the quaternion -- size = [B, 3, 3]
    """ 
    norm_quat = quat
    # norm_quat = norm_quat/norm_quat.norm(p=2, dim=1, keepdim=True)
    norm_quat = norm_quat/np.linalg.norm(norm_quat, ord=2, axis=1, keepdims=True)
    w, x, y, z = norm_quat[:,0], norm_quat[:,1], norm_quat[:,2], norm_quat[:,3]
    B = quat.shape[0]
    # w2, x2, y2, z2 = w.pow(2), x.pow(2), y.pow(2), z.pow(2)
    w2, x2, y2, z2 = w**2, x**2, y**2, z**2
    wx, wy, wz = w*x, w*y, w*z
    xy, xz, yz = x*y, x*z, y*z
    rotMat = np.stack([w2 + x2 - y2 - z2, 2*xy - 2*wz, 2*wy + 2*xz,
                          2*wz + 2*xy, w2 - x2 + y2 - z2, 2*yz - 2*wx,
                          2*xz - 2*wy, 2*wx + 2*yz, w2 - x2 - y2 + z2], axis=1).reshape(B, 3, 3)
    return rotMat  


def batch_rodrigues(theta):
    """Code from: https://github.com/nkolot/SPIN/blob/master/utils/geometry.py
    Convert axis-angle representation to rotation matrix.
    Remark: 
        this leads to the same result as kornia.angle_axis_to_rotation_matrix(theta)
    Args:
        theta: size = [B, 3]
    Returns:
        Rotation matrix corresponding to the quaternion -- size = [B, 3, 3]
    """
    l1norm = torch.norm(theta + 1e-8, p = 2, dim = 1)
    angle = torch.unsqueeze(l1norm, -1)
    normalized = torch.div(theta, angle)
    angle = angle * 0.5
    v_cos = torch.cos(angle)
    v_sin = torch.sin(angle)
    quat = torch.cat([v_cos, v_sin * normalized], dim = 1)
    return quat_to_rotmat(quat)

def batch_rot2aa(Rs, epsilon=1e-7):
    """ Code from: https://github.com/vchoutas/expose/blob/dffc38d62ad3817481d15fe509a93c2bb606cb8b/expose/utils/rotation_utils.py#L55 
    Rs is B x 3 x 3
    void cMathUtil::RotMatToAxisAngle(const tMatrix& mat, tVector& out_axis,
                                      double& out_theta)
    {
        double c = 0.5 * (mat(0, 0) + mat(1, 1) + mat(2, 2) - 1);
        c = cMathUtil::Clamp(c, -1.0, 1.0);
        out_theta = std::acos(c);
        if (std::abs(out_theta) < 0.00001)
        {
            out_axis = tVector(0, 0, 1, 0);
        }
        else
        {
            double m21 = mat(2, 1) - mat(1, 2);
            double m02 = mat(0, 2) - mat(2, 0);
            double m10 = mat(1, 0) - mat(0, 1);
            double denom = std::sqrt(m21 * m21 + m02 * m02 + m10 * m10);
            out_axis[0] = m21 / denom;
            out_axis[1] = m02 / denom;
            out_axis[2] = m10 / denom;
            out_axis[3] = 0;
        }
    }
    """
    cos = 0.5 * (torch.einsum('bii->b', [Rs]) - 1)
    cos = torch.clamp(cos, -1 + epsilon, 1 - epsilon)
    theta = torch.acos(cos)
    m21 = Rs[:, 2, 1] - Rs[:, 1, 2]
    m02 = Rs[:, 0, 2] - Rs[:, 2, 0]
    m10 = Rs[:, 1, 0] - Rs[:, 0, 1]
    denom = torch.sqrt(m21 * m21 + m02 * m02 + m10 * m10 + epsilon)
    axis0 = torch.where(torch.abs(theta) < 0.00001, m21, m21 / denom)
    axis1 = torch.where(torch.abs(theta) < 0.00001, m02, m02 / denom)
    axis2 = torch.where(torch.abs(theta) < 0.00001, m10, m10 / denom)
    return theta.unsqueeze(1) * torch.stack([axis0, axis1, axis2], 1)

def quat_to_rotmat(quat):
    """Code from: https://github.com/nkolot/SPIN/blob/master/utils/geometry.py
    Convert quaternion coefficients to rotation matrix.
    Args:
        quat: size = [B, 4] 4 <===>(w, x, y, z)
    Returns:
        Rotation matrix corresponding to the quaternion -- size = [B, 3, 3]
    """ 
    norm_quat = quat
    norm_quat = norm_quat/norm_quat.norm(p=2, dim=1, keepdim=True)
    w, x, y, z = norm_quat[:,0], norm_quat[:,1], norm_quat[:,2], norm_quat[:,3]

    B = quat.size(0)

    w2, x2, y2, z2 = w.pow(2), x.pow(2), y.pow(2), z.pow(2)
    wx, wy, wz = w*x, w*y, w*z
    xy, xz, yz = x*y, x*z, y*z

    rotMat = torch.stack([w2 + x2 - y2 - z2, 2*xy - 2*wz, 2*wy + 2*xz,
                          2*wz + 2*xy, w2 - x2 + y2 - z2, 2*yz - 2*wx,
                          2*xz - 2*wy, 2*wx + 2*yz, w2 - x2 - y2 + z2], dim=1).view(B, 3, 3)
    return rotMat   

def rot6d_to_rotmat(rot6d):
    """ Code from: https://github.com/nkolot/SPIN/blob/master/utils/geometry.py
    Convert 6D rotation representation to 3x3 rotation matrix.
    Based on Zhou et al., "On the Continuity of Rotation Representations in Neural Networks", CVPR 2019
    Input:
        (B,6) Batch of 6-D rotation representations
    Output:
        (B,3,3) Batch of corresponding rotation matrices
    """
    rot6d = rot6d.view(-1,3,2)
    a1 = rot6d[:, :, 0]
    a2 = rot6d[:, :, 1]
    b1 = F.normalize(a1)
    b2 = F.normalize(a2 - torch.einsum('bi,bi->b', b1, a2).unsqueeze(-1) * b1)
    b3 = torch.cross(b1, b2)
    rotmat = torch.stack((b1, b2, b3), dim=-1)
    return rotmat

def rotmat_to_rot6d(rotmat):
    """ Convert 3x3 rotation matrix to 6D rotation representation.
    Based on Zhou et al., "On the Continuity of Rotation Representations in Neural Networks", CVPR 2019
    Input:
        (B,3,3) Batch of corresponding rotation matrices
    Output:
        (B,6) Batch of 6-D rotation representations
    """ 
    rot6d = rotmat[:, :, :2].reshape((-1, 6))
    return rot6d


def main():
    # rotation matrix and 6d representation
    # see "On the Continuity of Rotation Representations in Neural Networks"
    from pyquaternion import Quaternion
    batch_size = 5
    rotmat = np.zeros((batch_size, 3, 3))
    for ind in range(0, batch_size):
        rotmat[ind, :, :] = Quaternion.random().rotation_matrix
    rotmat_torch = torch.Tensor(rotmat)
    rot6d = rotmat_to_rot6d(rotmat_torch)
    rotmat_rec = rot6d_to_rotmat(rot6d)
    print('..................... 1 ....................')
    print(rotmat_torch[0, :, :])
    print(rotmat_rec[0, :, :])
    print('Conversion from rotmat to rot6d and inverse are ok!')
    # rotation matrix and axis angle representation
    import kornia
    input = torch.rand(1, 3)
    output = kornia.angle_axis_to_rotation_matrix(input)
    input_rec = kornia.rotation_matrix_to_angle_axis(output)
    print('..................... 2 ....................')
    print(input)
    print(input_rec)
    print('Kornia implementation for rotation_matrix_to_angle_axis is wrong!!!!')
    # For non-differential conversions use scipy:
    #   https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.transform.Rotation.html
    from scipy.spatial.transform import Rotation as R
    r = R.from_matrix(rotmat[0, :, :])
    print('..................... 3 ....................')
    print(r.as_matrix())
    print(r.as_rotvec())
    print(r.as_quaternion)
    # one might furthermore have a look at:
    #   https://github.com/silviazuffi/smalst/blob/master/utils/transformations.py



if __name__ == "__main__":
    main()