Spaces:
Runtime error
Runtime error
File size: 8,789 Bytes
7629b39 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
import torch
from torch.nn import functional as F
import numpy as np
from torch import nn
def geodesic_loss(R, Rgt):
# see: Silvia tiger pose model 3d code
num_joints = R.shape[1]
RT = R.permute(0,1,3,2)
A = torch.matmul(RT.view(-1,3,3),Rgt.view(-1,3,3))
# torch.trace works only for 2D tensors
n = A.shape[0]
po_loss = 0
eps = 1e-7
T = torch.sum(A[:,torch.eye(3).bool()],1)
theta = torch.clamp(0.5*(T-1), -1+eps, 1-eps)
angles = torch.acos(theta)
loss = torch.sum(angles)/(n*num_joints)
return loss
class geodesic_loss_R(nn.Module):
def __init__(self,reduction='mean'):
super(geodesic_loss_R, self).__init__()
self.reduction = reduction
self.eps = 1e-6
# batch geodesic loss for rotation matrices
def bgdR(self,bRgts,bRps):
#return((bRgts - bRps)**2.).mean()
return geodesic_loss(bRgts, bRps)
def forward(self, ypred, ytrue):
theta = geodesic_loss(ypred,ytrue)
if self.reduction == 'mean':
return torch.mean(theta)
else:
return theta
def batch_rodrigues_numpy(theta):
""" Code adapted from spin
Convert axis-angle representation to rotation matrix.
Remark:
this leads to the same result as kornia.angle_axis_to_rotation_matrix(theta)
Args:
theta: size = [B, 3]
Returns:
Rotation matrix corresponding to the quaternion -- size = [B, 3, 3]
"""
l1norm = np.linalg.norm(theta + 1e-8, ord = 2, axis = 1)
# angle = np.unsqueeze(l1norm, -1)
angle = l1norm.reshape((-1, 1))
# normalized = np.div(theta, angle)
normalized = theta / angle
angle = angle * 0.5
v_cos = np.cos(angle)
v_sin = np.sin(angle)
# quat = np.cat([v_cos, v_sin * normalized], dim = 1)
quat = np.concatenate([v_cos, v_sin * normalized], axis = 1)
return quat_to_rotmat_numpy(quat)
def quat_to_rotmat_numpy(quat):
"""Code from: https://github.com/nkolot/SPIN/blob/master/utils/geometry.py
Convert quaternion coefficients to rotation matrix.
Args:
quat: size = [B, 4] 4 <===>(w, x, y, z)
Returns:
Rotation matrix corresponding to the quaternion -- size = [B, 3, 3]
"""
norm_quat = quat
# norm_quat = norm_quat/norm_quat.norm(p=2, dim=1, keepdim=True)
norm_quat = norm_quat/np.linalg.norm(norm_quat, ord=2, axis=1, keepdims=True)
w, x, y, z = norm_quat[:,0], norm_quat[:,1], norm_quat[:,2], norm_quat[:,3]
B = quat.shape[0]
# w2, x2, y2, z2 = w.pow(2), x.pow(2), y.pow(2), z.pow(2)
w2, x2, y2, z2 = w**2, x**2, y**2, z**2
wx, wy, wz = w*x, w*y, w*z
xy, xz, yz = x*y, x*z, y*z
rotMat = np.stack([w2 + x2 - y2 - z2, 2*xy - 2*wz, 2*wy + 2*xz,
2*wz + 2*xy, w2 - x2 + y2 - z2, 2*yz - 2*wx,
2*xz - 2*wy, 2*wx + 2*yz, w2 - x2 - y2 + z2], axis=1).reshape(B, 3, 3)
return rotMat
def batch_rodrigues(theta):
"""Code from: https://github.com/nkolot/SPIN/blob/master/utils/geometry.py
Convert axis-angle representation to rotation matrix.
Remark:
this leads to the same result as kornia.angle_axis_to_rotation_matrix(theta)
Args:
theta: size = [B, 3]
Returns:
Rotation matrix corresponding to the quaternion -- size = [B, 3, 3]
"""
l1norm = torch.norm(theta + 1e-8, p = 2, dim = 1)
angle = torch.unsqueeze(l1norm, -1)
normalized = torch.div(theta, angle)
angle = angle * 0.5
v_cos = torch.cos(angle)
v_sin = torch.sin(angle)
quat = torch.cat([v_cos, v_sin * normalized], dim = 1)
return quat_to_rotmat(quat)
def batch_rot2aa(Rs, epsilon=1e-7):
""" Code from: https://github.com/vchoutas/expose/blob/dffc38d62ad3817481d15fe509a93c2bb606cb8b/expose/utils/rotation_utils.py#L55
Rs is B x 3 x 3
void cMathUtil::RotMatToAxisAngle(const tMatrix& mat, tVector& out_axis,
double& out_theta)
{
double c = 0.5 * (mat(0, 0) + mat(1, 1) + mat(2, 2) - 1);
c = cMathUtil::Clamp(c, -1.0, 1.0);
out_theta = std::acos(c);
if (std::abs(out_theta) < 0.00001)
{
out_axis = tVector(0, 0, 1, 0);
}
else
{
double m21 = mat(2, 1) - mat(1, 2);
double m02 = mat(0, 2) - mat(2, 0);
double m10 = mat(1, 0) - mat(0, 1);
double denom = std::sqrt(m21 * m21 + m02 * m02 + m10 * m10);
out_axis[0] = m21 / denom;
out_axis[1] = m02 / denom;
out_axis[2] = m10 / denom;
out_axis[3] = 0;
}
}
"""
cos = 0.5 * (torch.einsum('bii->b', [Rs]) - 1)
cos = torch.clamp(cos, -1 + epsilon, 1 - epsilon)
theta = torch.acos(cos)
m21 = Rs[:, 2, 1] - Rs[:, 1, 2]
m02 = Rs[:, 0, 2] - Rs[:, 2, 0]
m10 = Rs[:, 1, 0] - Rs[:, 0, 1]
denom = torch.sqrt(m21 * m21 + m02 * m02 + m10 * m10 + epsilon)
axis0 = torch.where(torch.abs(theta) < 0.00001, m21, m21 / denom)
axis1 = torch.where(torch.abs(theta) < 0.00001, m02, m02 / denom)
axis2 = torch.where(torch.abs(theta) < 0.00001, m10, m10 / denom)
return theta.unsqueeze(1) * torch.stack([axis0, axis1, axis2], 1)
def quat_to_rotmat(quat):
"""Code from: https://github.com/nkolot/SPIN/blob/master/utils/geometry.py
Convert quaternion coefficients to rotation matrix.
Args:
quat: size = [B, 4] 4 <===>(w, x, y, z)
Returns:
Rotation matrix corresponding to the quaternion -- size = [B, 3, 3]
"""
norm_quat = quat
norm_quat = norm_quat/norm_quat.norm(p=2, dim=1, keepdim=True)
w, x, y, z = norm_quat[:,0], norm_quat[:,1], norm_quat[:,2], norm_quat[:,3]
B = quat.size(0)
w2, x2, y2, z2 = w.pow(2), x.pow(2), y.pow(2), z.pow(2)
wx, wy, wz = w*x, w*y, w*z
xy, xz, yz = x*y, x*z, y*z
rotMat = torch.stack([w2 + x2 - y2 - z2, 2*xy - 2*wz, 2*wy + 2*xz,
2*wz + 2*xy, w2 - x2 + y2 - z2, 2*yz - 2*wx,
2*xz - 2*wy, 2*wx + 2*yz, w2 - x2 - y2 + z2], dim=1).view(B, 3, 3)
return rotMat
def rot6d_to_rotmat(rot6d):
""" Code from: https://github.com/nkolot/SPIN/blob/master/utils/geometry.py
Convert 6D rotation representation to 3x3 rotation matrix.
Based on Zhou et al., "On the Continuity of Rotation Representations in Neural Networks", CVPR 2019
Input:
(B,6) Batch of 6-D rotation representations
Output:
(B,3,3) Batch of corresponding rotation matrices
"""
rot6d = rot6d.view(-1,3,2)
a1 = rot6d[:, :, 0]
a2 = rot6d[:, :, 1]
b1 = F.normalize(a1)
b2 = F.normalize(a2 - torch.einsum('bi,bi->b', b1, a2).unsqueeze(-1) * b1)
b3 = torch.cross(b1, b2)
rotmat = torch.stack((b1, b2, b3), dim=-1)
return rotmat
def rotmat_to_rot6d(rotmat):
""" Convert 3x3 rotation matrix to 6D rotation representation.
Based on Zhou et al., "On the Continuity of Rotation Representations in Neural Networks", CVPR 2019
Input:
(B,3,3) Batch of corresponding rotation matrices
Output:
(B,6) Batch of 6-D rotation representations
"""
rot6d = rotmat[:, :, :2].reshape((-1, 6))
return rot6d
def main():
# rotation matrix and 6d representation
# see "On the Continuity of Rotation Representations in Neural Networks"
from pyquaternion import Quaternion
batch_size = 5
rotmat = np.zeros((batch_size, 3, 3))
for ind in range(0, batch_size):
rotmat[ind, :, :] = Quaternion.random().rotation_matrix
rotmat_torch = torch.Tensor(rotmat)
rot6d = rotmat_to_rot6d(rotmat_torch)
rotmat_rec = rot6d_to_rotmat(rot6d)
print('..................... 1 ....................')
print(rotmat_torch[0, :, :])
print(rotmat_rec[0, :, :])
print('Conversion from rotmat to rot6d and inverse are ok!')
# rotation matrix and axis angle representation
import kornia
input = torch.rand(1, 3)
output = kornia.angle_axis_to_rotation_matrix(input)
input_rec = kornia.rotation_matrix_to_angle_axis(output)
print('..................... 2 ....................')
print(input)
print(input_rec)
print('Kornia implementation for rotation_matrix_to_angle_axis is wrong!!!!')
# For non-differential conversions use scipy:
# https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.transform.Rotation.html
from scipy.spatial.transform import Rotation as R
r = R.from_matrix(rotmat[0, :, :])
print('..................... 3 ....................')
print(r.as_matrix())
print(r.as_rotvec())
print(r.as_quaternion)
# one might furthermore have a look at:
# https://github.com/silviazuffi/smalst/blob/master/utils/transformations.py
if __name__ == "__main__":
main()
|