barc_gradio / gradio_demo /barc_demo_v3.py
Nadine Rueegg
...
3a79da3
raw
history blame
10.7 kB
# python gradio_demo/barc_demo_v3.py
import os
os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"]="0"
try:
# os.system("pip install --upgrade torch==1.11.0+cu113 torchvision==0.12.0+cu113 -f https://download.pytorch.org/whl/cu113/torch_stable.html")
os.system("pip install --upgrade torch==1.6.0+cu101 torchvision==0.7.0+cu101 -f https://download.pytorch.org/whl/cu101/torch_stable.html")
except Exception as e:
print(e)
import numpy as np
import os
import glob
import torch
from torch.utils.data import DataLoader
import torchvision
from torchvision.models.detection.faster_rcnn import FastRCNNPredictor
import torchvision.transforms as T
import cv2
from matplotlib import pyplot as plt
from PIL import Image
import gradio as gr
import sys
sys.path.insert(0, os.path.join(os.path.dirname(__file__), '../', 'src'))
from stacked_hourglass.datasets.imgcropslist import ImgCrops
from combined_model.train_main_image_to_3d_withbreedrel import do_visual_epoch
from combined_model.model_shape_v7 import ModelImageTo3d_withshape_withproj
from configs.barc_cfg_defaults import get_cfg_global_updated
def get_prediction(model, img_path_or_img, confidence=0.5):
"""
see https://haochen23.github.io/2020/04/object-detection-faster-rcnn.html#.YsMCm4TP3-g
get_prediction
parameters:
- img_path - path of the input image
- confidence - threshold value for prediction score
method:
- Image is obtained from the image path
- the image is converted to image tensor using PyTorch's Transforms
- image is passed through the model to get the predictions
- class, box coordinates are obtained, but only prediction score > threshold
are chosen.
"""
if isinstance(img_path_or_img, str):
img = Image.open(img_path_or_img).convert('RGB')
else:
img = img_path_or_img
transform = T.Compose([T.ToTensor()])
img = transform(img)
pred = model([img])
# pred_class = [COCO_INSTANCE_CATEGORY_NAMES[i] for i in list(pred[0]['labels'].numpy())]
pred_class = list(pred[0]['labels'].numpy())
pred_boxes = [[(int(i[0]), int(i[1])), (int(i[2]), int(i[3]))] for i in list(pred[0]['boxes'].detach().numpy())]
pred_score = list(pred[0]['scores'].detach().numpy())
try:
pred_t = [pred_score.index(x) for x in pred_score if x>confidence][-1]
pred_boxes = pred_boxes[:pred_t+1]
pred_class = pred_class[:pred_t+1]
return pred_boxes, pred_class, pred_score
except:
print('no bounding box with a score that is high enough found! -> work on full image')
return None, None, None
def detect_object(model, img_path_or_img, confidence=0.5, rect_th=2, text_size=0.5, text_th=1):
"""
see https://haochen23.github.io/2020/04/object-detection-faster-rcnn.html#.YsMCm4TP3-g
object_detection_api
parameters:
- img_path_or_img - path of the input image
- confidence - threshold value for prediction score
- rect_th - thickness of bounding box
- text_size - size of the class label text
- text_th - thichness of the text
method:
- prediction is obtained from get_prediction method
- for each prediction, bounding box is drawn and text is written
with opencv
- the final image is displayed
"""
boxes, pred_cls, pred_scores = get_prediction(model, img_path_or_img, confidence)
if isinstance(img_path_or_img, str):
img = cv2.imread(img_path_or_img)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
else:
img = img_path_or_img
is_first = True
bbox = None
if boxes is not None:
for i in range(len(boxes)):
cls = pred_cls[i]
if cls == 18 and bbox is None:
cv2.rectangle(img, boxes[i][0], boxes[i][1],color=(0, 255, 0), thickness=rect_th)
# cv2.putText(img, pred_cls[i], boxes[i][0], cv2.FONT_HERSHEY_SIMPLEX, text_size, (0,255,0),thickness=text_th)
cv2.putText(img, str(pred_scores[i]), boxes[i][0], cv2.FONT_HERSHEY_SIMPLEX, text_size, (0,255,0),thickness=text_th)
bbox = boxes[i]
return img, bbox
def run_bbox_inference(input_image):
# load configs
cfg = get_cfg_global_updated()
model = torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained=True)
model.eval()
out_path = os.path.join(cfg.paths.ROOT_OUT_PATH, 'gradio_examples', 'test2.png')
img, bbox = detect_object(model=model, img_path_or_img=input_image, confidence=0.5)
fig = plt.figure() # plt.figure(figsize=(20,30))
plt.imsave(out_path, img)
return img, bbox
def run_barc_inference(input_image, bbox=None):
# load configs
cfg = get_cfg_global_updated()
model_file_complete = os.path.join(cfg.paths.ROOT_CHECKPOINT_PATH, 'barc_complete', 'model_best.pth.tar')
# Select the hardware device to use for inference.
'''if torch.cuda.is_available() and cfg.device=='cuda':
device = torch.device('cuda', torch.cuda.current_device())
# torch.backends.cudnn.benchmark = True
else:
device = torch.device('cpu')'''
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print('----------------------> device: ')
print(device)
path_model_file_complete = os.path.join(cfg.paths.ROOT_CHECKPOINT_PATH, model_file_complete)
# Disable gradient calculations.
torch.set_grad_enabled(False)
# prepare complete model
complete_model = ModelImageTo3d_withshape_withproj(
num_stage_comb=cfg.params.NUM_STAGE_COMB, num_stage_heads=cfg.params.NUM_STAGE_HEADS, \
num_stage_heads_pose=cfg.params.NUM_STAGE_HEADS_POSE, trans_sep=cfg.params.TRANS_SEP, \
arch=cfg.params.ARCH, n_joints=cfg.params.N_JOINTS, n_classes=cfg.params.N_CLASSES, \
n_keyp=cfg.params.N_KEYP, n_bones=cfg.params.N_BONES, n_betas=cfg.params.N_BETAS, n_betas_limbs=cfg.params.N_BETAS_LIMBS, \
n_breeds=cfg.params.N_BREEDS, n_z=cfg.params.N_Z, image_size=cfg.params.IMG_SIZE, \
silh_no_tail=cfg.params.SILH_NO_TAIL, thr_keyp_sc=cfg.params.KP_THRESHOLD, add_z_to_3d_input=cfg.params.ADD_Z_TO_3D_INPUT,
n_segbps=cfg.params.N_SEGBPS, add_segbps_to_3d_input=cfg.params.ADD_SEGBPS_TO_3D_INPUT, add_partseg=cfg.params.ADD_PARTSEG, n_partseg=cfg.params.N_PARTSEG, \
fix_flength=cfg.params.FIX_FLENGTH, structure_z_to_betas=cfg.params.STRUCTURE_Z_TO_B, structure_pose_net=cfg.params.STRUCTURE_POSE_NET,
nf_version=cfg.params.NF_VERSION)
# load trained model
print(path_model_file_complete)
assert os.path.isfile(path_model_file_complete)
print('Loading model weights from file: {}'.format(path_model_file_complete))
checkpoint_complete = torch.load(path_model_file_complete)
state_dict_complete = checkpoint_complete['state_dict']
complete_model.load_state_dict(state_dict_complete, strict=False)
complete_model = complete_model.to(device)
save_imgs_path = os.path.join(cfg.paths.ROOT_OUT_PATH, 'gradio_examples')
if not os.path.exists(save_imgs_path):
os.makedirs(save_imgs_path)
input_image_list = [input_image]
if bbox is not None:
input_bbox_list = [bbox]
else:
input_bbox_list = None
val_dataset = ImgCrops(image_list=input_image_list, bbox_list=input_bbox_list, dataset_mode='complete')
test_name_list = val_dataset.test_name_list
val_loader = DataLoader(val_dataset, batch_size=1, shuffle=False,
num_workers=0, pin_memory=True, drop_last=False)
# run visual evaluation
# remark: take ACC_Joints and DATA_INFO from StanExt as this is the training dataset
all_results = do_visual_epoch(val_loader, complete_model, device,
ImgCrops.DATA_INFO,
weight_dict=None,
acc_joints=ImgCrops.ACC_JOINTS,
save_imgs_path=None, # save_imgs_path,
metrics='all',
test_name_list=test_name_list,
render_all=cfg.params.RENDER_ALL,
pck_thresh=cfg.params.PCK_THRESH,
return_results=True)
mesh = all_results[0]['mesh_posed']
result_path = os.path.join(save_imgs_path, test_name_list[0] + '_z')
mesh.apply_transform([[-1, 0, 0, 0],
[0, -1, 0, 0],
[0, 0, 1, 1],
[0, 0, 0, 1]])
mesh.export(file_obj=result_path + '.glb')
result_gltf = result_path + '.glb'
return [result_gltf, result_gltf]
def run_complete_inference(input_image):
output_interm_image, output_interm_bbox = run_bbox_inference(input_image.copy())
print(output_interm_bbox)
# output_image = run_barc_inference(input_image)
output_image = run_barc_inference(input_image, output_interm_bbox)
return output_image
# demo = gr.Interface(run_barc_inference, gr.Image(), "image")
# demo = gr.Interface(run_complete_inference, gr.Image(), "image")
# see: https://huggingface.co/spaces/radames/PIFu-Clothed-Human-Digitization/blob/main/PIFu/spaces.py
description = '''
# BARC
#### Project Page
* https://barc.is.tue.mpg.de/
#### Description
This is a demo for BARC. While BARC is trained on image crops, this demo uses a pretrained Faster-RCNN in order to get bounding boxes for the dogs.
To see your result you may have to wait a minute or two, please be paitient.
<details>
<summary>More</summary>
#### Citation
```
@inproceedings{BARC:2022,
title = {BARC}: Learning to Regress {3D} Dog Shape from Images by Exploiting Breed Information,
author = {Rueegg, Nadine and Zuffi, Silvia and Schindler, Konrad and Black, Michael J.},
booktitle = {Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)},
year = {2022}
}
```
</details>
'''
examples = sorted(glob.glob(os.path.join(os.path.dirname(__file__), '../', 'datasets', 'test_image_crops', '*.jpg')) + glob.glob(os.path.join(os.path.dirname(__file__), '../', 'datasets', 'test_image_crops', '*.png')))
demo = gr.Interface(
fn=run_complete_inference,
description=description,
# inputs=gr.Image(type="filepath", label="Input Image"),
inputs=gr.Image(label="Input Image"),
outputs=[
gr.Model3D(
clear_color=[0.0, 0.0, 0.0, 0.0], label="3D Model"),
gr.File(label="Download 3D Model")
],
examples=examples,
thumbnail="barc_thumbnail.png",
allow_flagging="never",
cache_examples=True
)
demo.launch(share=True)