Nadine Rueegg
initial commit for barc
7629b39
raw
history blame
1.89 kB
# Modified from:
# https://github.com/anibali/pytorch-stacked-hourglass
# https://github.com/bearpaw/pytorch-pose
import os
import shutil
import scipy.io
import torch
def to_numpy(tensor):
if torch.is_tensor(tensor):
return tensor.detach().cpu().numpy()
elif type(tensor).__module__ != 'numpy':
raise ValueError("Cannot convert {} to numpy array"
.format(type(tensor)))
return tensor
def to_torch(ndarray):
if type(ndarray).__module__ == 'numpy':
return torch.from_numpy(ndarray)
elif not torch.is_tensor(ndarray):
raise ValueError("Cannot convert {} to torch tensor"
.format(type(ndarray)))
return ndarray
def save_checkpoint(state, preds, is_best, checkpoint='checkpoint', filename='checkpoint.pth.tar', snapshot=None):
preds = to_numpy(preds)
filepath = os.path.join(checkpoint, filename)
torch.save(state, filepath)
scipy.io.savemat(os.path.join(checkpoint, 'preds.mat'), mdict={'preds' : preds})
if snapshot and state['epoch'] % snapshot == 0:
shutil.copyfile(filepath, os.path.join(checkpoint, 'checkpoint_{}.pth.tar'.format(state['epoch'])))
if is_best:
shutil.copyfile(filepath, os.path.join(checkpoint, 'model_best.pth.tar'))
scipy.io.savemat(os.path.join(checkpoint, 'preds_best.mat'), mdict={'preds' : preds})
def save_pred(preds, checkpoint='checkpoint', filename='preds_valid.mat'):
preds = to_numpy(preds)
filepath = os.path.join(checkpoint, filename)
scipy.io.savemat(filepath, mdict={'preds' : preds})
def adjust_learning_rate(optimizer, epoch, lr, schedule, gamma):
"""Sets the learning rate to the initial LR decayed by schedule"""
if epoch in schedule:
lr *= gamma
for param_group in optimizer.param_groups:
param_group['lr'] = lr
return lr