Spaces:
Runtime error
Runtime error
Nadine Rueegg
commited on
Commit
β’
4ff797f
1
Parent(s):
4546506
update packages and requirements
Browse files- app.py +263 -4
- packages.txt +8 -0
- requirements.txt +15 -0
app.py
CHANGED
@@ -1,10 +1,269 @@
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
import gradio as gr
|
4 |
|
5 |
-
def greet(name):
|
6 |
-
return "Hello " + name + "!!"
|
7 |
|
8 |
-
iface = gr.Interface(fn=greet, inputs="text", outputs="text")
|
9 |
-
iface.launch()
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
2 |
+
# python gradio_demo/barc_demo_v3.py
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import os
|
6 |
+
import glob
|
7 |
+
import torch
|
8 |
+
from torch.utils.data import DataLoader
|
9 |
+
import torchvision
|
10 |
+
from torchvision.models.detection.faster_rcnn import FastRCNNPredictor
|
11 |
+
import torchvision.transforms as T
|
12 |
+
import cv2
|
13 |
+
from matplotlib import pyplot as plt
|
14 |
+
from PIL import Image
|
15 |
|
16 |
import gradio as gr
|
17 |
|
|
|
|
|
18 |
|
|
|
|
|
19 |
|
20 |
+
import sys
|
21 |
+
sys.path.insert(0, os.path.join(os.path.dirname(__file__), '../', 'src'))
|
22 |
+
from stacked_hourglass.datasets.imgcropslist import ImgCrops
|
23 |
+
from combined_model.train_main_image_to_3d_withbreedrel import do_visual_epoch
|
24 |
+
from combined_model.model_shape_v7 import ModelImageTo3d_withshape_withproj
|
25 |
+
|
26 |
+
from configs.barc_cfg_defaults import get_cfg_global_updated
|
27 |
+
|
28 |
+
|
29 |
+
|
30 |
+
def get_prediction(model, img_path_or_img, confidence=0.5):
|
31 |
+
"""
|
32 |
+
see https://haochen23.github.io/2020/04/object-detection-faster-rcnn.html#.YsMCm4TP3-g
|
33 |
+
get_prediction
|
34 |
+
parameters:
|
35 |
+
- img_path - path of the input image
|
36 |
+
- confidence - threshold value for prediction score
|
37 |
+
method:
|
38 |
+
- Image is obtained from the image path
|
39 |
+
- the image is converted to image tensor using PyTorch's Transforms
|
40 |
+
- image is passed through the model to get the predictions
|
41 |
+
- class, box coordinates are obtained, but only prediction score > threshold
|
42 |
+
are chosen.
|
43 |
+
|
44 |
+
"""
|
45 |
+
if isinstance(img_path_or_img, str):
|
46 |
+
img = Image.open(img_path_or_img).convert('RGB')
|
47 |
+
else:
|
48 |
+
img = img_path_or_img
|
49 |
+
transform = T.Compose([T.ToTensor()])
|
50 |
+
img = transform(img)
|
51 |
+
pred = model([img])
|
52 |
+
# pred_class = [COCO_INSTANCE_CATEGORY_NAMES[i] for i in list(pred[0]['labels'].numpy())]
|
53 |
+
pred_class = list(pred[0]['labels'].numpy())
|
54 |
+
pred_boxes = [[(int(i[0]), int(i[1])), (int(i[2]), int(i[3]))] for i in list(pred[0]['boxes'].detach().numpy())]
|
55 |
+
pred_score = list(pred[0]['scores'].detach().numpy())
|
56 |
+
try:
|
57 |
+
pred_t = [pred_score.index(x) for x in pred_score if x>confidence][-1]
|
58 |
+
pred_boxes = pred_boxes[:pred_t+1]
|
59 |
+
pred_class = pred_class[:pred_t+1]
|
60 |
+
return pred_boxes, pred_class, pred_score
|
61 |
+
except:
|
62 |
+
print('no bounding box with a score that is high enough found! -> work on full image')
|
63 |
+
return None, None, None
|
64 |
+
|
65 |
+
def detect_object(model, img_path_or_img, confidence=0.5, rect_th=2, text_size=0.5, text_th=1):
|
66 |
+
"""
|
67 |
+
see https://haochen23.github.io/2020/04/object-detection-faster-rcnn.html#.YsMCm4TP3-g
|
68 |
+
object_detection_api
|
69 |
+
parameters:
|
70 |
+
- img_path_or_img - path of the input image
|
71 |
+
- confidence - threshold value for prediction score
|
72 |
+
- rect_th - thickness of bounding box
|
73 |
+
- text_size - size of the class label text
|
74 |
+
- text_th - thichness of the text
|
75 |
+
method:
|
76 |
+
- prediction is obtained from get_prediction method
|
77 |
+
- for each prediction, bounding box is drawn and text is written
|
78 |
+
with opencv
|
79 |
+
- the final image is displayed
|
80 |
+
"""
|
81 |
+
boxes, pred_cls, pred_scores = get_prediction(model, img_path_or_img, confidence)
|
82 |
+
if isinstance(img_path_or_img, str):
|
83 |
+
img = cv2.imread(img_path_or_img)
|
84 |
+
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
85 |
+
else:
|
86 |
+
img = img_path_or_img
|
87 |
+
is_first = True
|
88 |
+
bbox = None
|
89 |
+
if boxes is not None:
|
90 |
+
for i in range(len(boxes)):
|
91 |
+
cls = pred_cls[i]
|
92 |
+
if cls == 18 and bbox is None:
|
93 |
+
cv2.rectangle(img, boxes[i][0], boxes[i][1],color=(0, 255, 0), thickness=rect_th)
|
94 |
+
# cv2.putText(img, pred_cls[i], boxes[i][0], cv2.FONT_HERSHEY_SIMPLEX, text_size, (0,255,0),thickness=text_th)
|
95 |
+
cv2.putText(img, str(pred_scores[i]), boxes[i][0], cv2.FONT_HERSHEY_SIMPLEX, text_size, (0,255,0),thickness=text_th)
|
96 |
+
bbox = boxes[i]
|
97 |
+
return img, bbox
|
98 |
+
|
99 |
+
|
100 |
+
|
101 |
+
def run_bbox_inference(input_image):
|
102 |
+
model = torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained=True)
|
103 |
+
model.eval()
|
104 |
+
out_path = os.path.join(cfg.paths.ROOT_OUT_PATH, 'gradio_examples', 'test2.png')
|
105 |
+
img, bbox = detect_object(model=model, img_path_or_img=input_image, confidence=0.5)
|
106 |
+
fig = plt.figure() # plt.figure(figsize=(20,30))
|
107 |
+
plt.imsave(out_path, img)
|
108 |
+
return img, bbox
|
109 |
+
|
110 |
+
|
111 |
+
|
112 |
+
|
113 |
+
|
114 |
+
def run_barc_inference(input_image, bbox=None):
|
115 |
+
|
116 |
+
# load configs
|
117 |
+
cfg = get_cfg_global_updated()
|
118 |
+
|
119 |
+
model_file_complete = os.path.join(cfg.paths.ROOT_CHECKPOINT_PATH, 'barc_complete', 'model_best.pth.tar')
|
120 |
+
|
121 |
+
|
122 |
+
|
123 |
+
# Select the hardware device to use for inference.
|
124 |
+
if torch.cuda.is_available() and cfg.device=='cuda':
|
125 |
+
device = torch.device('cuda', torch.cuda.current_device())
|
126 |
+
# torch.backends.cudnn.benchmark = True
|
127 |
+
else:
|
128 |
+
device = torch.device('cpu')
|
129 |
+
|
130 |
+
path_model_file_complete = os.path.join(cfg.paths.ROOT_CHECKPOINT_PATH, model_file_complete)
|
131 |
+
|
132 |
+
# Disable gradient calculations.
|
133 |
+
torch.set_grad_enabled(False)
|
134 |
+
|
135 |
+
# prepare complete model
|
136 |
+
complete_model = ModelImageTo3d_withshape_withproj(
|
137 |
+
num_stage_comb=cfg.params.NUM_STAGE_COMB, num_stage_heads=cfg.params.NUM_STAGE_HEADS, \
|
138 |
+
num_stage_heads_pose=cfg.params.NUM_STAGE_HEADS_POSE, trans_sep=cfg.params.TRANS_SEP, \
|
139 |
+
arch=cfg.params.ARCH, n_joints=cfg.params.N_JOINTS, n_classes=cfg.params.N_CLASSES, \
|
140 |
+
n_keyp=cfg.params.N_KEYP, n_bones=cfg.params.N_BONES, n_betas=cfg.params.N_BETAS, n_betas_limbs=cfg.params.N_BETAS_LIMBS, \
|
141 |
+
n_breeds=cfg.params.N_BREEDS, n_z=cfg.params.N_Z, image_size=cfg.params.IMG_SIZE, \
|
142 |
+
silh_no_tail=cfg.params.SILH_NO_TAIL, thr_keyp_sc=cfg.params.KP_THRESHOLD, add_z_to_3d_input=cfg.params.ADD_Z_TO_3D_INPUT,
|
143 |
+
n_segbps=cfg.params.N_SEGBPS, add_segbps_to_3d_input=cfg.params.ADD_SEGBPS_TO_3D_INPUT, add_partseg=cfg.params.ADD_PARTSEG, n_partseg=cfg.params.N_PARTSEG, \
|
144 |
+
fix_flength=cfg.params.FIX_FLENGTH, structure_z_to_betas=cfg.params.STRUCTURE_Z_TO_B, structure_pose_net=cfg.params.STRUCTURE_POSE_NET,
|
145 |
+
nf_version=cfg.params.NF_VERSION)
|
146 |
+
|
147 |
+
# load trained model
|
148 |
+
print(path_model_file_complete)
|
149 |
+
assert os.path.isfile(path_model_file_complete)
|
150 |
+
print('Loading model weights from file: {}'.format(path_model_file_complete))
|
151 |
+
checkpoint_complete = torch.load(path_model_file_complete)
|
152 |
+
state_dict_complete = checkpoint_complete['state_dict']
|
153 |
+
complete_model.load_state_dict(state_dict_complete, strict=False)
|
154 |
+
complete_model = complete_model.to(device)
|
155 |
+
|
156 |
+
save_imgs_path = os.path.join(cfg.paths.ROOT_OUT_PATH, 'gradio_examples')
|
157 |
+
if not os.path.exists(save_imgs_path):
|
158 |
+
os.makedirs(save_imgs_path)
|
159 |
+
|
160 |
+
input_image_list = [input_image]
|
161 |
+
if bbox is not None:
|
162 |
+
input_bbox_list = [bbox]
|
163 |
+
else:
|
164 |
+
input_bbox_list = None
|
165 |
+
val_dataset = ImgCrops(image_list=input_image_list, bbox_list=input_bbox_list, dataset_mode='complete')
|
166 |
+
test_name_list = val_dataset.test_name_list
|
167 |
+
val_loader = DataLoader(val_dataset, batch_size=1, shuffle=False,
|
168 |
+
num_workers=0, pin_memory=True, drop_last=False)
|
169 |
+
|
170 |
+
# run visual evaluation
|
171 |
+
# remark: take ACC_Joints and DATA_INFO from StanExt as this is the training dataset
|
172 |
+
all_results = do_visual_epoch(val_loader, complete_model, device,
|
173 |
+
ImgCrops.DATA_INFO,
|
174 |
+
weight_dict=None,
|
175 |
+
acc_joints=ImgCrops.ACC_JOINTS,
|
176 |
+
save_imgs_path=None, # save_imgs_path,
|
177 |
+
metrics='all',
|
178 |
+
test_name_list=test_name_list,
|
179 |
+
render_all=cfg.params.RENDER_ALL,
|
180 |
+
pck_thresh=cfg.params.PCK_THRESH,
|
181 |
+
return_results=True)
|
182 |
+
|
183 |
+
mesh = all_results[0]['mesh_posed']
|
184 |
+
result_path = os.path.join(save_imgs_path, test_name_list[0] + '_z')
|
185 |
+
|
186 |
+
mesh.apply_transform([[-1, 0, 0, 0],
|
187 |
+
[0, -1, 0, 0],
|
188 |
+
[0, 0, 1, 1],
|
189 |
+
[0, 0, 0, 1]])
|
190 |
+
mesh.export(file_obj=result_path + '.glb')
|
191 |
+
result_gltf = result_path + '.glb'
|
192 |
+
return [result_gltf, result_gltf]
|
193 |
+
|
194 |
+
|
195 |
+
|
196 |
+
|
197 |
+
|
198 |
+
|
199 |
+
def run_complete_inference(input_image):
|
200 |
+
|
201 |
+
output_interm_image, output_interm_bbox = run_bbox_inference(input_image.copy())
|
202 |
+
|
203 |
+
print(output_interm_bbox)
|
204 |
+
|
205 |
+
# output_image = run_barc_inference(input_image)
|
206 |
+
output_image = run_barc_inference(input_image, output_interm_bbox)
|
207 |
+
|
208 |
+
return output_image
|
209 |
+
|
210 |
+
|
211 |
+
|
212 |
+
|
213 |
+
# demo = gr.Interface(run_barc_inference, gr.Image(), "image")
|
214 |
+
# demo = gr.Interface(run_complete_inference, gr.Image(), "image")
|
215 |
+
|
216 |
+
|
217 |
+
|
218 |
+
# see: https://huggingface.co/spaces/radames/PIFu-Clothed-Human-Digitization/blob/main/PIFu/spaces.py
|
219 |
+
|
220 |
+
description = '''
|
221 |
+
# BARC
|
222 |
+
|
223 |
+
#### Project Page
|
224 |
+
* https://barc.is.tue.mpg.de/
|
225 |
+
|
226 |
+
#### Description
|
227 |
+
This is a demo for BARC. While BARC is trained on image crops, this demo uses a pretrained Faster-RCNN in order to get bounding boxes for the dogs.
|
228 |
+
To see your result you may have to wait a minute or two, please be paitient.
|
229 |
+
|
230 |
+
<details>
|
231 |
+
|
232 |
+
<summary>More</summary>
|
233 |
+
|
234 |
+
#### Citation
|
235 |
+
|
236 |
+
```
|
237 |
+
@inproceedings{BARC:2022,
|
238 |
+
title = {BARC}: Learning to Regress {3D} Dog Shape from Images by Exploiting Breed Information,
|
239 |
+
author = {Rueegg, Nadine and Zuffi, Silvia and Schindler, Konrad and Black, Michael J.},
|
240 |
+
booktitle = {Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)},
|
241 |
+
year = {2022}
|
242 |
+
}
|
243 |
+
```
|
244 |
+
|
245 |
+
</details>
|
246 |
+
'''
|
247 |
+
|
248 |
+
examples = sorted(glob.glob(os.path.join(os.path.dirname(__file__), '../', 'datasets', 'test_image_crops', '*.jpg')) + glob.glob(os.path.join(os.path.dirname(__file__), '../', 'datasets', 'test_image_crops', '*.png')))
|
249 |
+
|
250 |
+
|
251 |
+
demo = gr.Interface(
|
252 |
+
fn=run_complete_inference,
|
253 |
+
description=description,
|
254 |
+
# inputs=gr.Image(type="filepath", label="Input Image"),
|
255 |
+
inputs=gr.Image(label="Input Image"),
|
256 |
+
outputs=[
|
257 |
+
gr.Model3D(
|
258 |
+
clear_color=[0.0, 0.0, 0.0, 0.0], label="3D Model"),
|
259 |
+
gr.File(label="Download 3D Model")
|
260 |
+
],
|
261 |
+
examples=examples,
|
262 |
+
thumbnail="barc_thumbnail.png",
|
263 |
+
allow_flagging="never",
|
264 |
+
cache_examples=True
|
265 |
+
)
|
266 |
+
|
267 |
+
|
268 |
+
|
269 |
+
demo.launch(share=True)
|
packages.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
libgl1
|
2 |
+
unzip
|
3 |
+
ffmpeg
|
4 |
+
libsm6
|
5 |
+
libxext6
|
6 |
+
libgl1-mesa-dri
|
7 |
+
libegl1-mesa
|
8 |
+
libgbm1
|
requirements.txt
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch==1.6.0
|
2 |
+
torchvision==0.7.0
|
3 |
+
pytorch3d==0.2.5
|
4 |
+
kornia==0.4.0
|
5 |
+
matplotlib
|
6 |
+
opencv-python
|
7 |
+
trimesh
|
8 |
+
scipy
|
9 |
+
chumpy
|
10 |
+
pymp
|
11 |
+
importlib-resources
|
12 |
+
pycocotools
|
13 |
+
openpyxl
|
14 |
+
dominate
|
15 |
+
git+https://github.com/runa91/FrEIA.git
|