import os import glob import numpy as np import torch import torch.utils.data as data import sys sys.path.insert(0, os.path.join(os.path.dirname(__file__), '..', '..')) from configs.anipose_data_info import COMPLETE_DATA_INFO from stacked_hourglass.utils.imutils import load_image from stacked_hourglass.utils.transforms import crop, color_normalize from stacked_hourglass.utils.pilutil import imresize from stacked_hourglass.utils.imutils import im_to_torch from configs.dataset_path_configs import TEST_IMAGE_CROP_ROOT_DIR from configs.data_info import COMPLETE_DATA_INFO_24 class ImgCrops(data.Dataset): DATA_INFO = COMPLETE_DATA_INFO_24 ACC_JOINTS = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 16] def __init__(self, img_crop_folder='default', image_path=None, is_train=False, inp_res=256, out_res=64, sigma=1, scale_factor=0.25, rot_factor=30, label_type='Gaussian', do_augment='default', shorten_dataset_to=None, dataset_mode='keyp_only'): assert is_train == False assert do_augment == 'default' or do_augment == False self.inp_res = inp_res if img_crop_folder == 'default': self.folder_imgs = os.path.join(os.path.dirname(__file__), '..', '..', '..', 'datasets', 'test_image_crops') else: self.folder_imgs = img_crop_folder name_list = glob.glob(os.path.join(self.folder_imgs, '*.png')) + glob.glob(os.path.join(self.folder_imgs, '*.jpg')) + glob.glob(os.path.join(self.folder_imgs, '*.jpeg')) name_list = sorted(name_list) self.test_name_list = [name.split('/')[-1] for name in name_list] print('len(dataset): ' + str(self.__len__())) def __getitem__(self, index): img_name = self.test_name_list[index] # load image img_path = os.path.join(self.folder_imgs, img_name) img = load_image(img_path) # CxHxW # prepare image (cropping and color) img_max = max(img.shape[1], img.shape[2]) img_padded = torch.zeros((img.shape[0], img_max, img_max)) if img_max == img.shape[2]: start = (img_max-img.shape[1])//2 img_padded[:, start:start+img.shape[1], :] = img else: start = (img_max-img.shape[2])//2 img_padded[:, :, start:start+img.shape[2]] = img img = img_padded img_prep = im_to_torch(imresize(img, [self.inp_res, self.inp_res], interp='bilinear')) inp = color_normalize(img_prep, self.DATA_INFO.rgb_mean, self.DATA_INFO.rgb_stddev) # add the following fields to make it compatible with stanext, most of them are fake target_dict = {'index': index, 'center' : -2, 'scale' : -2, 'breed_index': -2, 'sim_breed_index': -2, 'ind_dataset': 1} target_dict['pts'] = np.zeros((self.DATA_INFO.n_keyp, 3)) target_dict['tpts'] = np.zeros((self.DATA_INFO.n_keyp, 3)) target_dict['target_weight'] = np.zeros((self.DATA_INFO.n_keyp, 1)) target_dict['silh'] = np.zeros((self.inp_res, self.inp_res)) return inp, target_dict def __len__(self): return len(self.test_name_list)