Spaces:
Running
Running
import torch | |
import numpy as np | |
def model_predict(model, tokenizer, sentences): | |
""" | |
Predict the labels of the sentences using the model and tokenizer | |
Args: | |
model: Model (transformers) | |
tokenizer: Tokenizer (transformers tokenizer) | |
sentences: Sentences to predict (ndarray) | |
Returns: | |
predictions: Predicted labels | |
""" | |
inputs = tokenizer(sentences, padding=True, truncation=True, return_tensors="pt", max_length=512).to("cpu") | |
# Classify sentences | |
with torch.no_grad(): | |
outputs = model(**inputs) # get the logits | |
label = np.argmax(outputs.logits.to("cpu")) | |
return int(label) |